#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define MASK(i) (1ULL << (i))
#define GETBIT(mask, i) (((mask) >> (i)) & 1)
#define ALL(v) (v).begin(), (v).end()
#define block_of_code if(true)
ll max(ll a, ll b){return (a > b) ? a : b;}
ll min(ll a, ll b){return (a < b) ? a : b;}
ll gcd(ll a, ll b){return __gcd(a, b);}
ll lcm(ll a, ll b){return a / gcd(a, b) * b;}
ll LASTBIT(ll mask){return (mask) & (-mask);}
int pop_cnt(ull mask){return __builtin_popcountll(mask);}
int ctz(ull mask){return __builtin_ctzll(mask);}
int logOf(ull mask){return 63 - __builtin_clzll(mask);}
mt19937_64 rng(chrono::high_resolution_clock::now().time_since_epoch().count());
ll rngesus(ll l, ll r){return l + (ull) rng() % (r - l + 1);}
double rngesus_d(double l, double r){
double cur = rngesus(0, MASK(60) - 1);
cur /= MASK(60) - 1;
return l + cur * (r - l);
}
template <class T1, class T2>
bool maximize(T1 &a, T2 b){
if (a < b) {a = b; return true;}
return false;
}
template <class T1, class T2>
bool minimize(T1 &a, T2 b){
if (a > b) {a = b; return true;}
return false;
}
template <class T>
void printArr(T container, string separator = " ", string finish = "\n", ostream &out = cout){
for(auto item: container) out << item << separator;
out << finish;
}
template <class T>
void remove_dup(vector<T> &a){
sort(ALL(a));
a.resize(unique(ALL(a)) - a.begin());
}
const int MOD = 30013;
struct Modular{
ll x;
Modular(ll _x = 0){
x = _x % MOD;
if (x < 0) x += MOD;
}
Modular& operator += (Modular y){
x += y.x;
if (x >= MOD) x -= MOD;
return *this;
}
Modular operator + (Modular y) {
Modular tmp = *this;
return tmp += y;
}
Modular& operator -= (Modular y){
x -= y.x;
if (x < 0) x += MOD;
return *this;
}
Modular operator - (Modular y) {
Modular tmp = *this;
return tmp -= y;
}
Modular& operator *= (Modular y){
x *= y.x;
if (x >= MOD) x %= MOD;
return *this;
}
Modular operator * (Modular y) {
Modular tmp = *this;
return tmp *= y;
}
// use at your own risk
bool operator == (Modular y){
return x == y.x;
}
bool operator != (Modular y){
return x != y.x;
}
};
ostream& operator << (ostream& out, Modular x){
out << x.x;
return out;
}
Modular fast_pow(Modular a, int n){
Modular ans = 1;
while(n > 0){
if (n & 1) ans *= a;
a *= a;
n >>= 1;
}
return ans;
}
Modular inverse(Modular a){return fast_pow(a, MOD - 2);}
struct Node{
int val;
Modular cnt;
Node(int val, Modular cnt): val(val), cnt(cnt){}
};
Node combine(Node a, Node b){
Node c(max(a.val, b.val), 0);
if (a.val == c.val) c.cnt += a.cnt;
if (b.val == c.val) c.cnt += b.cnt;
return c;
}
struct FenwickTree{
int n;
vector<Node> a;
FenwickTree(int _n){
n = _n;
for(int i = 0; i <= n; ++i) a.push_back(Node(0, 0));
}
void update(int i, Node v){
while(i <= n){
a[i] = combine(a[i], v);
i += LASTBIT(i);
}
}
Node get(int i){
Node ans(0, 0);
while(i > 0){
ans = combine(ans, a[i]);
i -= LASTBIT(i);
}
return ans;
}
};
void solve(){
int n; cin >> n;
vector<array<int, 4>> rape_zoid(n);
for(int i =0; i<n; ++i)
for(int j = 0; j< 4; ++j) cin >> rape_zoid[i][j];
vector<int> X = {0}, Y = {0};
for(auto i: rape_zoid){
X.push_back(i[0]);
X.push_back(i[1]);
Y.push_back(i[2]);
Y.push_back(i[3]);
}
remove_dup(X); remove_dup(Y);
for(auto &i: rape_zoid){
i[0] = lower_bound(ALL(X), i[0]) - X.begin();
i[1] = lower_bound(ALL(X), i[1]) - X.begin();
i[2] = lower_bound(ALL(Y), i[2]) - Y.begin();
i[3] = lower_bound(ALL(Y), i[3]) - Y.begin();
}
int x = X.size() - 1, y = Y.size() - 1;
FenwickTree bit(y);
vector<vector<int>> enter_query(x + 1), exit_query(x + 1);
vector<Node> lmao(n, Node(0, 0));
for(int i = 0; i< n; ++i){
enter_query[rape_zoid[i][0]].push_back(i);
exit_query[rape_zoid[i][1]].push_back(i);
}
for(int i = 1; i <= x; ++i){
for(int j: exit_query[i]){
bit.update(rape_zoid[j][3], lmao[j]);
}
for(int j: enter_query[i]){
Node cur = bit.get(rape_zoid[j][2]);
cur.val++;
if (cur.val == 1) cur.cnt = 1;
lmao[j] = cur;
}
}
Node ans(0, 0);
for(int i = 0; i < n; ++i) ans = combine(ans, lmao[i]);
cout << ans.val << " " << ans.cnt << "\n";
}
int main(void){
ios::sync_with_stdio(0);cin.tie(0); cout.tie(0);
clock_t start = clock();
solve();
cerr << "Time elapsed: " << clock() - start << " ms\n";
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |