Submission #1115942

#TimeUsernameProblemLanguageResultExecution timeMemory
1115942JeffLegendPowerBalloons (CEOI11_bal)C++17
100 / 100
441 ms10180 KiB
// https://oj.uz/problem/view/CEOI11_bal #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace __gnu_pbds; using namespace std; #define ll long long #define plli pair<ll, int> #define pll pair<ll, ll> #define pii pair<int, int> // Usage: FOR(i, 0, N) {...} #define FOR(i, start, end) for(int i = start; i < end; i++) mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int uid(int a, int b) { return uniform_int_distribution<int>(a, b)(rng); } ll uld(ll a, ll b) { return uniform_int_distribution<ll>(a, b)(rng); } void setIO(string s) { freopen((s + ".in").c_str(), "r", stdin); freopen((s + ".out").c_str(), "w", stdout); } struct comp { bool operator() (const plli& a, const plli& b) const { return a < b; } }; typedef tree<plli, null_type, comp, rb_tree_tag, tree_order_statistics_node_update> ordered_multiset; // Segtree start const int Nmax = 1e5; // limit for array size int N; // array size int t[2 * Nmax]; int oper(int a, int b) { return a + b; } void build() { // build the tree for (int i = N - 1; i > 0; --i) t[i] = oper(t[i<<1], t[i<<1|1]); } void modify(int p, int value) { // set value at position p for (t[p += N] = value; p > 1; p >>= 1) t[p>>1] = oper(t[p], t[p^1]); } int query(int l, int r) { // on interval [l, r) int res = 0; for (l += N, r += N; l < r; l >>= 1, r >>= 1) { if (l&1) res = oper(res, t[l++]); if (r&1) res = oper(res, t[--r]); } return res; } // Segtree end #define pdd pair<double, double> int main() { // Comment out for interactive problems ios::sync_with_stdio(false); cin.tie(nullptr); // let x be the radius of current balloon // let y be the radius of some previous balloon // let d be the distance between current balloon and some previous balloon // looking at just the current balloon with radius x and a previous balloon with radius y and the balloons are a distance d apart // we can create a triangle that relates x, y, and d assuming the 2 balloons touch // and get that (y-x)^2 + d^2 = (y+x)^2 // y^2 - 2xy + x^2 + d^2 = y^2 + 2xy + x^2 // d^2 = 4xy // x = d^2/4y // so now x is equal to the min of the max radius of the balloon and the min across all x = d^2/4y for all balloons before the current one // this takes O(n^2) time, but we can optimize it to O(n) // lets ignore the maximum radius bound for now // first notice that lets say for balloon i, the bounding balloon is j // say that bound(a) = bound caused by balloon a on balloon i // we know that for any balloon k < j, bound(k) >= bound(j) // now lets say our distance increases by m. we can show that all k < j will never be a bounding balloon ever again because // for all k < j, d[k to i] > d[j to i], and since we are calculating d^2, we see that because d[k to i] > d[j to i], // (d[k to i] + m)^2 > (d[j to i] + m)^2 while the denominator stays constant, which means that bound(k) will increase more than bound(j) // this means that once j is a bounding balloon, we never have to look before j again // UPDATE turns out that this is not needed to solve this problem :skull: // observation: if radius(j) > radius(k<j) then balloon j will be a better bounding balloon than balloon k // and lets say for current balloon i, radius(j<i) > radius(i) int N; cin >> N; pdd b[N]; for (int i = 0; i < N; i++) cin >> b[i].first >> b[i].second; cout << fixed << setprecision(3); double r[N]; stack<int> s; for (int i = 0; i < N; i++) { r[i] = b[i].second; while (!s.empty()) { int j = s.top(); r[i] = min(r[i], (b[i].first - b[j].first) * (b[i].first - b[j].first) / (4*r[j])); if (r[i] < r[j]) break; s.pop(); } // we do like this because for all r[j] <= r[i] they won't be able to be bounding in the future so we can just test them // and remove from the stack. and for r[j] > r[i] we only need to look at that r[j] because for any k<j to be bounding if (!s.empty()) { int j = s.top(); r[i] = min(r[i], (b[i].first - b[j].first) * (b[i].first - b[j].first) / (4*r[j])); } s.push(i); // for (int j = i - 1; j >= 0; j--) r[i] = min(r[i], (b[i].first - b[j].first) * (b[i].first - b[j].first) / (4*r[j])); cout << r[i] << endl; } }

Compilation message (stderr)

bal.cpp: In function 'void setIO(std::string)':
bal.cpp:22:9: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
   22 |  freopen((s + ".in").c_str(), "r", stdin);
      |  ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
bal.cpp:23:9: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
   23 |  freopen((s + ".out").c_str(), "w", stdout);
      |  ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...