Submission #1108185

#TimeUsernameProblemLanguageResultExecution timeMemory
1108185keunbumRace (IOI11_race)C++14
100 / 100
302 ms45768 KiB
/////////////////////////////////////////////// // // _____ ____ _____ ___ ___ __ __ // |_ _| / __ \ |_ _| |__ \ / _ \ /_ | /_ | // | | | | | | | | ) | | | | | | | | | // | | | | | | | | / / | | | | | | | | // _| |_ | |__| | _| |_ / /_ | |_| | | | | | // |_____| \____/ |_____| |____| \___/ |_| |_| // // // Year: IOI'2011 // Problem: Race, Day 1 // Solution: 100 Points, O(NlogN) // Author: Pedro Paredes // /////////////////////////////////////////////// #include <stdio.h> #include <stdlib.h> #include <string.h> #include <vector> #include <algorithm> using namespace std; typedef pair<int, int> pii; #define MAXN 200050 #define MAXK 1000050 #define F first #define S second int N, K, global_answer; // Input and result variables int split_node, current_max; // Variables to calculate centroid int book_keeping; // Book keeping helper int H[MAXN][2]; // Input variables int L[MAXN]; int processed[MAXN]; // Markers to help main recursion int size[MAXN]; // Size of subtrees in rooted tree int achievable[MAXK]; // Helper arrays for minimum paths crossing v int minimum_paths[MAXK]; vector<pii> neighbors[MAXN]; // The actual tree /////////////////////////////////////////////// // // Goal: Calculate the size of each subtree // /////////////////////////////////////////////// void calc_size(int current, int parent) { size[current] = 0; // Recurse on unprocessed nodes and update size int i; for (i = 0; i < (int)neighbors[current].size(); i++) if (!processed[neighbors[current][i].F] && neighbors[current][i].F != parent) { calc_size(neighbors[current][i].F, current); size[current] += 1 + size[neighbors[current][i].F]; } } /////////////////////////////////////////////// // // Goal: Calculate the centroid // /////////////////////////////////////////////// void select_split_node(int current, int parent, int total) { int node_max = (total - size[current] - 1); // Recurse on unprocessed nodes updating the maximum subtree on node_max int i; for (i = 0; i < (int)neighbors[current].size(); i++) if (!processed[neighbors[current][i].F] && neighbors[current][i].F != parent) { select_split_node(neighbors[current][i].F, current, total); node_max = max(node_max, 1 + size[neighbors[current][i].F]); } if (node_max < current_max) { split_node = current; current_max = node_max; } } /////////////////////////////////////////////// // // Goal: DFS from the centroid to calculate all paths // /////////////////////////////////////////////// void dfs_from_node(int current, int parent, int current_cost, int current_length, int fill) { if (current_cost > K) return; if (!fill) // If we are calculating the paths { if (achievable[K - current_cost] == book_keeping) if (current_length + minimum_paths[K - current_cost] < global_answer || global_answer == -1) global_answer = current_length + minimum_paths[K - current_cost]; if (current_cost == K) if (current_length < global_answer || global_answer == -1) global_answer = current_length; } else // If we are filling the helper array { if (achievable[current_cost] < book_keeping) { achievable[current_cost] = book_keeping; minimum_paths[current_cost] = current_length; } else if (current_length < minimum_paths[current_cost]) { achievable[current_cost] = book_keeping; minimum_paths[current_cost] = current_length; } } // Recurse on unprocessed nodes int i; for (i = 0; i < (int)neighbors[current].size(); i++) if (!processed[neighbors[current][i].F] && neighbors[current][i].F != parent) dfs_from_node(neighbors[current][i].F, current, current_cost + neighbors[current][i].S, current_length + 1, fill); } /////////////////////////////////////////////// // // Goal: Calculate best for subtree // /////////////////////////////////////////////// void process(int current) { // Fill the size array calc_size(current, -1); // Base case if (size[current] <= 1) return; // Calculate the centroid and put it in split_node split_node = -1; current_max = size[current] + 3; select_split_node(current, -1, size[current] + 1); // Double dfs to calculate minimums and fill helper array book_keeping++; int i; for (i = 0; i < (int)neighbors[split_node].size(); i++) if (!processed[neighbors[split_node][i].F]) { dfs_from_node(neighbors[split_node][i].F, split_node, neighbors[split_node][i].S, 1, 0); dfs_from_node(neighbors[split_node][i].F, split_node, neighbors[split_node][i].S, 1, 1); } int local_split_node = split_node; // Since split_node is global processed[split_node] = 1; // Mark as processed to cap recursion // Call main method on each subtree from centroid for (i = 0; i < (int)neighbors[local_split_node].size(); i++) if (!processed[neighbors[local_split_node][i].F]) process(neighbors[local_split_node][i].F); } /////////////////////////////////////////////// // // Goal: Answer the task // /////////////////////////////////////////////// int best_path(int _N, int _K, int H[][2], int L[]) { // Reset arrays and variables memset(processed, 0, sizeof processed); memset(achievable, 0, sizeof achievable); memset(minimum_paths, 0, sizeof minimum_paths); N = _N; K = _K; book_keeping = 0; // Build tree int i; for (i = 0; i < N - 1; i++) { neighbors[H[i][0]].push_back(pii(H[i][1], L[i])); neighbors[H[i][1]].push_back(pii(H[i][0], L[i])); } global_answer = -1; // Call main method for whole tree process(0); return global_answer; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...