Submission #1104342

#TimeUsernameProblemLanguageResultExecution timeMemory
1104342crimson231Scissors and Tape (CEOI19_scissors)C++17
100 / 100
3 ms1104 KiB
/* https://codeforces.com/blog/entry/68748 */ #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <algorithm> #include <cmath> #include <cstring> #include <cassert> #include <vector> typedef long long ll; //typedef long double ld; typedef double ld; typedef std::pair<int, int> pi; typedef std::vector<int> Vint; typedef std::vector<ld> Vld; const ld INF = 1e17; const ld TOL = 1e-6; const ld PI = acos(-1); const int LEN = 20005; inline int sign(const ll& x) { return x < 0 ? -1 : !!x; } inline int sign(const ld& x) { return x < -TOL ? -1 : x > TOL; } inline bool zero(const ld& x) { return !sign(x); } inline bool eq(const ld& u, const ld& v) { return zero(u - v); } void cut(const int& i, const int& cnt) { std::cout << "scissors\n"; std::cout << i << " " << cnt << "\n"; } void tape(const int& cnt, const Vint& I) { std::cout << "tape\n"; std::cout << cnt; for (const int& i : I) std::cout << " " << i; std::cout << "\n"; } int N, M; struct Pii { int x, y; Pii(int X = 0, int Y = 0) : x(X), y(Y) {} Pii operator + (const Pii& p) const { return { x + p.x, y + p.y }; } Pii operator - (const Pii& p) const { return { x - p.x, y - p.y }; } ll operator * (const Pii& p) const { return (ll)x * p.x + (ll)y * p.y; } ll operator / (const Pii& p) const { return (ll)x * p.y - (ll)y * p.x; } ll Euc() const { return (ll)x * x + (ll)y * y; } friend std::istream& operator >> (std::istream& is, Pii& p) { is >> p.x >> p.y; return is; } friend std::ostream& operator << (std::ostream& os, const Pii& p) { os << p.x << " " << p.y; return os; } }; const Pii Oii = Pii(); typedef std::vector<Pii> Vpii; Vpii Sii, Tii; void print(const Vpii& H) { std::cout << H.size(); for (const Pii& p : H) std::cout << " " << p; std::cout << "\n"; return; } ll cross(const Pii& d1, const Pii& d2, const Pii& d3) { return (d2 - d1) / (d3 - d2); } int ccw(const Pii& d1, const Pii& d2, const Pii& d3) { return sign(cross(d1, d2, d3)); } ll dot(const Pii& d1, const Pii& d2, const Pii& d3) { return (d2 - d1) * (d3 - d2); } bool on_seg_weak(const Pii& d1, const Pii& d2, const Pii& d3) { return !ccw(d1, d2, d3) && sign(dot(d1, d3, d2)) > 0; } bool intersect(const Pii& s1, const Pii& s2, const Pii& d1, const Pii& d2) { bool f1 = ccw(s1, s2, d1) * ccw(s2, s1, d2) > 0; bool f2 = ccw(d1, d2, s1) * ccw(d2, d1, s2) > 0; return f1 && f2; } ll area(const Vpii& H) { ll a = 0; int sz = H.size(); for (int i = 0; i < sz; i++) a += H[i] / H[(i + 1) % sz]; return a; } bool inside(const Pii& p0, const Pii& p1, const Pii& p2, const Pii& q) { if (ccw(p0, p1, p2) < 0) return ccw(p0, p1, q) > 0 || ccw(p1, p2, q) > 0; return ccw(p0, p1, q) > 0 && ccw(p1, p2, q) > 0; } bool closer(const Vpii& H, const int& i, const int& j) { int sz = H.size(); int i0 = (i - 1 + sz) % sz, i2 = (i + 1) % sz; if (!inside(H[i0], H[i], H[i2], H[j])) return 0; for (int k0 = 0; k0 < sz; k0++) { int k1 = (k0 + 1) % sz; if (k0 == i || k0 == j || k1 == i || k1 == j) continue; if (intersect(H[i], H[j], H[k0], H[k1])) return 0; if (on_seg_weak(H[i], H[j], H[k0])) return 0; if (on_seg_weak(H[i], H[j], H[k1])) return 0; } return 1; } struct Pos { ld x, y; Pos(ld X = 0, ld Y = 0) : x(X), y(Y) {} bool operator == (const Pos& p) const { return zero(x - p.x) && zero(y - p.y); } //bool operator != (const Pos& p) const { return !zero(x - p.x) || !zero(y - p.y); } //bool operator < (const Pos& p) const { return zero(x - p.x) ? y < p.y : x < p.x; } Pos operator + (const Pos& p) const { return { x + p.x, y + p.y }; } Pos operator - (const Pos& p) const { return { x - p.x, y - p.y }; } Pos operator * (const ld& scalar) const { return { x * scalar, y * scalar }; } Pos operator / (const ld& scalar) const { return { x / scalar, y / scalar }; } ld operator * (const Pos& p) const { return x * p.x + y * p.y; } ld operator / (const Pos& p) const { return x * p.y - y * p.x; } Pos& operator += (const Pos& p) { x += p.x; y += p.y; return *this; } //Pos& operator -= (const Pos& p) { x -= p.x; y -= p.y; return *this; } //Pos operator - () const { return { -x, -y }; } Pos operator ~ () const { return { -y, x }; } ld Euc() const { return x * x + y * y; } ld mag() const { return sqrt(Euc()); } friend std::istream& operator >> (std::istream& is, Pos& p) { is >> p.x >> p.y; return is; } friend std::ostream& operator << (std::ostream& os, const Pos& p) { os << p.x << " " << p.y; return os; } }; const Pos O = { 0, 0 }; typedef std::vector<Pos> Polygon; Polygon P[LEN]; int t; Polygon TRI[20]; int tr; Pos cnv(const Pii& p) { return Pos(p.x, p.y); } void print(const Polygon& H) { std::cout << H.size(); for (const Pos& p : H) std::cout << " " << p; std::cout << "\n"; return; } ld cross(const Pos& d1, const Pos& d2, const Pos& d3) { return (d2 - d1) / (d3 - d2); } int ccw(const Pos& d1, const Pos& d2, const Pos& d3) { return sign(cross(d1, d2, d3)); } Pos intersection(const Pos& p1, const Pos& p2, const Pos& q1, const Pos& q2) { ld a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2); return (p1 * a2 + p2 * a1) / (a1 + a2); } ld area(const Polygon& H) { ld a = 0; int sz = H.size(); for (int i = 0; i < sz; i++) a += H[i] / H[(i + 1) % sz]; return a * .5; } Polygon box(const ld& x0, const ld& y0, const ld& x1, const ld& y1) { return { Pos(x0, y0), Pos(x1, y0), Pos(x1, y1), Pos(x0, y1) }; } void triangulation(const Vpii& H) { int sz = H.size(); if (sz == 3) { const Pii& p0 = H[0], p1 = H[1], p2 = H[2]; ll l0 = (p0 - p1).Euc(), l1 = (p1 - p2).Euc(), l2 = (p2 - p0).Euc(); ll lmax = std::max({ l0, l1, l2 }); Polygon tri; for (int i = 0; i < 3; i++) { const Pii& q0 = H[i], q1 = H[(i + 1) % 3], q2 = H[(i + 2) % 3]; Pii v = q0 - q1; l0 = v.Euc(); if (l0 == lmax) { tri = { cnv(q0), cnv(q1), cnv(q2) }; break; } } TRI[tr++] = tri; return; } for (int i = 0; i < sz; i++) { for (int j = i + 1; j < sz; j++) { if (closer(H, i, j)) { Vpii H1, H2; for (int k = i; k != (j + 1) % sz; k = (k + 1) % sz) H1.push_back(H[k]); for (int k = j; k != (i + 1) % sz; k = (k + 1) % sz) H2.push_back(H[k]); triangulation(H1); triangulation(H2); return; } } } return; } void rect_to_rect(const int& i, const ld& x, const ld& y, const ld& l, Vint& id, const ld& yy = 0) { if (eq(x, l)) { id.push_back(i); return; } if (sign(x - l * 2) >= 0 || sign(l - x * 2) >= 0) { Polygon R0, R1, R2, R2_; ld nx, ny; if (sign(x - l * 2) >= 0) { nx = x * .5; ny = y * 2; R0 = box(0, 0, nx, ny); R1 = box(0, 0, nx, y); R2 = box(nx, 0, x, y); R2_ = box(0, y, nx, ny); } else if (sign(l - x * 2) >= 0) { nx = x * 2; ny = y * .5; R0 = box(0, 0, nx, ny); R1 = box(0, 0, x, ny), R2 = box(0, ny, x, y); R2_ = box(x, 0, nx, ny); } Vint I = { t, t + 1 }; if (!zero(yy)) { for (Pos& p : R0) p.y += yy; for (Pos& p : R1) p.y += yy; for (Pos& p : R2) p.y += yy; for (Pos& p : R2_) p.y += yy; } cut(i, 2); print(R1); print(R2); tape(2, I); print(R1); print(R2_); print(R0); t += 2; P[t++] = R0; rect_to_rect(t - 1, nx, ny, l, id, yy); return; } Polygon R0, TZ, TB, TS; Pos vb, vs; ld h = (x * y) / l, dx, dy; dx = std::abs(x - l); dy = std::abs(y - h); R0 = box(0, 0, l, h); if (sign(x - l) > 0) { TZ = { O, Pos(l, 0), Pos(l, dy), Pos(dx, y), Pos(0, y) }; TB = { Pos(dx, y), Pos(x, 0), Pos(x, y) }; TS = { Pos(l, 0), Pos(x, 0), Pos(l, dy) }; vb = Pos(-dx, dy); vs = Pos(-l, y); } else { TZ = { O, Pos(x, 0), Pos(x, dy), Pos(dx, h), Pos(0, h) }; TB = { Pos(0, y), Pos(x, dy), Pos(x, y) }; TS = { Pos(0, h), Pos(dx, h), Pos(0, y) }; vb = Pos(dx, -dy); vs = Pos(x, -h); } if (!zero(yy)) { for (Pos& p : R0) p.y += yy; for (Pos& p : TZ) p.y += yy; for (Pos& p : TB) p.y += yy; for (Pos& p : TS) p.y += yy; } cut(i, 3); print(TZ); print(TB); print(TS); for (Pos& b : TB) b += vb; for (Pos& s : TS) s += vs; Vint I = { t, t + 1, t + 2 }; tape(3, I); print(TZ); print(TB); print(TS); print(R0); t += 3; id.push_back(t); P[t++] = R0; return; } void rect_to_rect(const int& i, const ld& l, Vint& id, const ld& yy = 0) { Polygon& H = P[i]; int sz = H.size(); assert(sz == 4); ld x = H[1].x - H[0].x; ld y = H[3].y - H[0].y; rect_to_rect(i, x, y, l, id, yy); return; } void tri_to_rect(const int& tt, Vint& id, int rt = -1) { Polygon H = TRI[tt]; int sz = H.size(); assert(sz == 3); const Pos& p0 = H[0], p1 = H[1], p2 = H[2]; Pos v = p0 - p1; ld y; if (~rt) { ld l0 = v.mag(); y = P[rt][0].y; Vint idx; assert(P[rt].size() == 4); rect_to_rect(rt, l0, idx, y); assert(idx.size() == 1); rt = idx[0]; assert(rt == t - 1); } Pos pl = (p0 + p2) * .5, pr = (p1 + p2) * .5; Pos m = intersection(pl, pr, p2, p2 + ~v); Polygon R0 = { p0, p1, pr, pl }, Tl = { p2, pl, m }, Tr = { p2, m, pr }; ld dd = (p0 - p1).mag(); ld dr = (pr - m).mag(); ld dl = (pl - m).mag(); ld h = std::abs(cross(p0, p1, p2)) / dd / 2; Polygon R0_ = { Pos(0, 0), Pos(dd, 0), Pos(dd - dr, h), Pos(dl, h) }; Polygon Tl_ = { Pos(0, 0), Pos(dl, h), Pos(0, h) }; Polygon Tr_ = { Pos(dd, 0), Pos(dd, h), Pos(dd - dr, h) }; Vint I = { t, t + 1, t + 2 }; t += 3; id.push_back(t); if (~rt) { for (Pos& p : R0_) p.y += y; for (Pos& p : Tl_) p.y += y; for (Pos& p : Tr_) p.y += y; cut(rt, 3); print(R0_); print(Tl_); print(Tr_); tape(3, I); print(R0); print(Tl); print(Tr); print(H); P[t++] = H; } else { Polygon R = box(0, 0, dd, h); cut(tt, 3); print(R0); print(Tl); print(Tr); tape(3, I); print(R0_); print(Tl_); print(Tr_); print(R); P[t++] = R; } return; } void rect_to_square(const ld& l, Vint& id) { Polygon square = box(0, 0, l, l); tape(id.size(), id); ld y = 0; for (const int& i : id) { Polygon B = P[i]; assert(B.size() == 4); for (Pos& b : B) b.y += y; print(B); y = B[2].y; } print(square); P[t++] = square; return; } void square_split(Vint& id) { tr = 1; assert(area(Sii) == area(Tii)); ld l = sqrt(area(Tii) * .5); triangulation(Tii); cut(t - 1, tr - 1); ld y = 0; for (int i = 1; i < tr; i++) { ld a = std::abs(area(TRI[i])); ld h = a / l; Polygon B = box(0, y, l, y + h); print(B); id.push_back(t); P[t++] = B; y += h; } return; } void start_to_square() { tr = 1; ld l = sqrt(area(Sii) * .5); triangulation(Sii); //P[0] = S for (t = 1; t < tr; t++) P[t] = TRI[t]; cut(0, tr - 1); for (int i = 1; i < t; i++) print(P[i]); int t1 = t; Vint id, idx; for (int i = 1; i < t1; i++) tri_to_rect(i, idx); for (const int& i : idx) rect_to_rect(i, l, id); rect_to_square(l, id); assert(P[t - 1][2] == Pos(l, l)); return; } void square_to_target() { Vint id, idx; square_split(idx); int tt = 1; for (const int& rt : idx) tri_to_rect(tt++, id, rt); tape(id.size(), id); for (const int& i : id) print(P[i]); print(Tii); return; } void solve() { std::cin.tie(0)->sync_with_stdio(0); std::cout.tie(0); std::cout << std::fixed; std::cout.precision(6); std::cin >> N; Sii.resize(N); for (Pii& p : Sii) std::cin >> p; assert(area(Sii) > 0); std::cin >> M; Tii.resize(M); for (Pii& p : Tii) std::cin >> p; assert(area(Tii) > 0); start_to_square(); square_to_target(); return; } int main() { solve(); return 0; }//boj17645 /* https://codeforces.com/blog/entry/68748 */

Compilation message (stderr)

scissors.cpp: In function 'void tri_to_rect(const int&, Vint&, int)':
scissors.cpp:248:3: warning: this 'for' clause does not guard... [-Wmisleading-indentation]
  248 |   for (Pos& p : R0_) p.y += y; for (Pos& p : Tl_) p.y += y; for (Pos& p : Tr_) p.y += y;
      |   ^~~
scissors.cpp:248:32: note: ...this statement, but the latter is misleadingly indented as if it were guarded by the 'for'
  248 |   for (Pos& p : R0_) p.y += y; for (Pos& p : Tl_) p.y += y; for (Pos& p : Tr_) p.y += y;
      |                                ^~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...