// incorrect/felix-multiple-heuristics-efficient.cpp
#include "hieroglyphs.h"
#include<bits/stdc++.h>
using namespace std;
using vi = vector<int>;
using vvi = vector<vi>;
using ii = pair<int, int>;
namespace tomek {
constexpr int alphabet = 200'001;
vector<int> _ucs(
const vector<int> text_a,
const vector<int> text_b)
{
const int na = text_a.size();
const int nb = text_b.size();
vector<vector<int>> positions_a(alphabet);
vector<vector<int>> positions_b(alphabet);
for (int i=0; i<na; ++i) {
positions_a[text_a[i]].push_back(i);
}
for (int i=0; i<nb; ++i) {
positions_b[text_b[i]].push_back(i);
}
vector<int> next_a(alphabet, 0);
vector<int> next_b(alphabet, 0);
int pos_a = 0;
int pos_b = 0;
vector<int> result;
while (pos_a < na && pos_b < nb) {
int ta = text_a[pos_a];
int tb = text_b[pos_b];
if (ta == tb) {
result.push_back(ta);
++pos_a;
++pos_b;
continue;
}
for (int t : {ta, tb}) {
while (next_a[t] < int(positions_a[t].size()) && positions_a[t][next_a[t]] < pos_a) {
++next_a[t];
}
while (next_b[t] < int(positions_b[t].size()) && positions_b[t][next_b[t]] < pos_b) {
++next_b[t];
}
}
int left_ta_self = int(positions_a[ta].size()) - next_a[ta];
int left_ta_opp = int(positions_b[ta].size()) - next_b[ta];
int left_tb_self = int(positions_b[tb].size()) - next_b[tb];
int left_tb_opp = int(positions_a[tb].size()) - next_a[tb];
if (left_ta_opp == 0) {
++pos_a;
continue;
}
if (left_tb_opp == 0) {
++pos_b;
continue;
}
if (left_ta_self <= left_ta_opp) {
if (left_tb_self <= left_tb_opp) {
return {-1};
} else {
++pos_b;
continue;
}
} else {
if (left_tb_self <= left_tb_opp) {
++pos_a;
continue;
} else {
int pos_ta_opp = positions_b[ta][next_b[ta]];
int pos_tb_opp = positions_a[tb][next_a[tb]];
int last_ta = positions_a[ta][next_a[ta] + left_ta_self - left_ta_opp];
int last_tb = positions_b[tb][next_b[tb] + left_tb_self - left_tb_opp];
if (last_ta < pos_tb_opp) {
if (last_tb < pos_ta_opp) {
return {-1};
} else {
++pos_b;
continue;
}
} else {
if (last_tb < pos_ta_opp) {
++pos_a;
continue;
} else {
return {-1};
}
}
}
}
}
return result;
}
vector<int> ucs(vector<int> a, vector<int> b) {
vector<int> r1 = _ucs(a, b);
std::reverse(a.begin(), a.end());
std::reverse(b.begin(), b.end());
vector<int> r2 = _ucs(a, b);
std::reverse(r2.begin(), r2.end());
return (r1 == r2) ? r1 : vector<int>({-1});
}
}
namespace yiping_solexist {
typedef pair<int,int> pii;
struct Data
{
int d;
vector<int> a, cnt, rnk;
vector< vector<int> > pos;
Data(vector<int> _a, int _d)
{
a = _a; d = _d;
cnt.resize(d); pos.resize(d); rnk.resize(a.size());
for(int i=0; i<(int)a.size(); ++i)
{
int x = a[i];
rnk[i] = cnt[x]; ++cnt[x];
pos[x].emplace_back(i);
}
}
bool check(int x,int cx,int y,int cy) const
{
if(cx > (int)pos[x].size() || cy > (int)pos[y].size())
return 0;
if(cx == 0 || cy == 0) return 1;
return pos[x][cx - 1] < pos[y][(int)pos[y].size() - cy];
}
};
vector<int> get_cand(const Data &aa, const Data &bb)
{
int d = aa.d;
vector<int> type(d), need(d);
for(int i=0; i<d; ++i)
{
type[i] = aa.cnt[i] <= bb.cnt[i]? 0: 1;
need[i] = min(aa.cnt[i], bb.cnt[i]);
}
vector<pii> veca, vecb;
for(int i=0; i<(int)aa.a.size(); ++i)
if(type[aa.a[i]] == 0)
veca.emplace_back(aa.a[i], aa.rnk[i]);
for(int i=0; i<(int)bb.a.size(); ++i)
if(type[bb.a[i]] == 1)
vecb.emplace_back(bb.a[i], bb.rnk[i]);
auto check = [&] (pii x,pii y)
{
return aa.check(x.first, x.second + 1, y.first, need[y.first] - y.second)
&& bb.check(x.first, x.second + 1, y.first, need[y.first] - y.second);
};
vector<int> c;
int i = 0, j = 0;
while(i<(int)veca.size() && j<(int)vecb.size())
{
bool tx = check(veca[i], vecb[j]);
bool ty = check(vecb[j], veca[i]);
if(tx == ty) return {-1};
if(tx) c.emplace_back(veca[i].first), ++i;
else c.emplace_back(vecb[j].first), ++j;
}
while(i<(int)veca.size()) c.emplace_back(veca[i].first), ++i;
while(j<(int)vecb.size()) c.emplace_back(vecb[j].first), ++j;
return c;
}
bool is_invalid(const vector<int> &c)
{
return c.size() == 1 && c[0] == -1;
}
vector<int> ucs(vector<int> a, vector<int> b)
{
int d = 0;
for(auto t: a)
d = max(d, t + 1);
for(auto t: b)
d = max(d, t + 1);
Data aa(a, d), bb(b, d);
auto c = get_cand(aa, bb);
if(is_invalid(c)) return c;
return c;
}
}
namespace yiping_wa {
#include<bits/stdc++.h>
#include"hieroglyphs.h"
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
struct Data
{
int d;
vector<int> a, cnt, rnk;
vector< vector<int> > pos;
Data(vector<int> _a, int _d)
{
a = _a; d = _d;
cnt.resize(d); pos.resize(d); rnk.resize(a.size());
for(int i=0; i<(int)a.size(); ++i)
{
int x = a[i];
rnk[i] = cnt[x]; ++cnt[x];
pos[x].emplace_back(i);
}
}
bool check(int x,int cx,int y,int cy) const
{
if(cx > (int)pos[x].size() || cy > (int)pos[y].size())
return 0;
if(cx == 0 || cy == 0) return 1;
return pos[x][cx - 1] < pos[y][(int)pos[y].size() - cy];
}
int get_next(int i,int x) const
{
auto it = lower_bound(pos[x].begin(), pos[x].end(), i);
return it == pos[x].end()? (int)a.size(): *it;
}
};
vector<int> get_cand(const Data &aa, const Data &bb)
{
int d = aa.d;
vector<int> type(d), need(d);
for(int i=0; i<d; ++i)
{
type[i] = aa.cnt[i] <= bb.cnt[i]? 0: 1;
need[i] = min(aa.cnt[i], bb.cnt[i]);
}
vector<pii> veca, vecb;
for(int i=0; i<(int)aa.a.size(); ++i)
if(type[aa.a[i]] == 0)
veca.emplace_back(aa.a[i], aa.rnk[i]);
for(int i=0; i<(int)bb.a.size(); ++i)
if(type[bb.a[i]] == 1)
vecb.emplace_back(bb.a[i], bb.rnk[i]);
auto check = [&] (pii x,pii y)
{
return aa.check(x.first, x.second + 1, y.first, need[y.first] - y.second)
&& bb.check(x.first, x.second + 1, y.first, need[y.first] - y.second);
};
vector<int> c;
int i = 0, j = 0;
while(i<(int)veca.size() && j<(int)vecb.size())
{
bool tx = check(veca[i], vecb[j]);
bool ty = check(vecb[j], veca[i]);
if(tx == ty) return {-1};
if(tx) c.emplace_back(veca[i].first), ++i;
else c.emplace_back(vecb[j].first), ++j;
}
while(i<(int)veca.size()) c.emplace_back(veca[i].first), ++i;
while(j<(int)vecb.size()) c.emplace_back(vecb[j].first), ++j;
return c;
}
bool is_invalid(const vector<int> &c)
{
return c.size() == 1 && c[0] == -1;
}
bool is_subseq(const vector<int> &a, const vector<int> &c)
{
int j = 0;
for(int i=0; i<(int)a.size() && j<(int)c.size(); ++i)
if(a[i] == c[j]) ++j;
return j >= (int)c.size();
}
vector<int> ucs(vector<int> a, vector<int> b)
{
int d = 0;
for(auto t: a)
d = max(d, t + 1);
for(auto t: b)
d = max(d, t + 1);
Data aa(a, d), bb(b, d);
auto c = get_cand(aa, bb);
if(is_invalid(c)) return c;
if(!is_subseq(a, c)) return {-1};
if(!is_subseq(b, c)) return {-1};
Data cc(c, d);
const int LIM = 3000;
const int pa = min(LIM, (int)a.size());
const int pb = min(LIM, (int)b.size());
int len_a = 0, len_b = 0;
for(int i=(int)a.size()-1; i>=pa; --i)
if(len_a < (int)c.size() && a[i] == c[(int)c.size() - len_a - 1])
++len_a;
for(int i=(int)b.size()-1; i>=pb; --i)
if(len_b < (int)c.size() && b[i] == c[(int)c.size() - len_b - 1])
++len_b;
vector< vector<int> > dp(pa+1, vector<int>(pb+1));
for(int i=0; i<=pa; ++i)
for(int j=0; j<=pb; ++j)
{
if(i) dp[i][j] = max(dp[i][j], dp[i-1][j]);
if(j) dp[i][j] = max(dp[i][j], dp[i][j-1]);
if(i && j && a[i-1] == b[j-1])
{
dp[i][j] = max(dp[i][j], cc.get_next(dp[i-1][j-1], a[i-1]) + 1);
if(dp[i][j] + min(len_a, len_b) > (int)c.size())
return {-1};
}
}
return c;
}
}
namespace felix_wa_jumps {
int ALPHABET_SIZE = 0;
bool is_subsequence(const vi& a, const vi& b) {
int j = 0;
for (int x : a) {
if (j < (int)b.size() && b[j] == x) {
j++;
}
}
return j == (int)b.size();
}
vi get_candidate(const vi& a, const vi& b) {
int n = a.size();
int m = b.size();
vi occ_a(ALPHABET_SIZE, 0);
vi occ_b(ALPHABET_SIZE, 0);
for (int i=0; i < n; ++i) {
occ_a[a[i]]++;
}
for (int i=0; i < m; ++i) {
occ_b[b[i]]++;
}
vi c;
queue<int> qa;
queue<int> qb;
for (int i=0; i < n; ++i) {
if (occ_a[a[i]] <= occ_b[a[i]]) {
qa.push(i);
}
}
for (int i=0; i < m; ++i) {
if (occ_a[b[i]] > occ_b[b[i]]) {
qb.push(i);
}
}
int i_a_curr = 0;
int i_b_curr = 0;
int i_a_next = 0;
int i_b_next = 0;
vi occ_a_curr = vi(occ_a);
vi occ_a_next = vi(occ_a);
vi occ_b_curr = vi(occ_b);
vi occ_b_next = vi(occ_b);
while(!qa.empty() && !qb.empty()) {
while(i_a_next < qa.front()) {
occ_a_next[a[i_a_next]]--;
i_a_next++;
}
while(i_b_next < qb.front()) {
occ_b_next[b[i_b_next]]--;
i_b_next++;
}
int x = a[i_a_next];
int y = b[i_b_next];
int occ_x = occ_a_next[x];
int occ_y = occ_b_next[y];
bool a_good = (occ_a_next[y] >= occ_y && occ_b_curr[x] > occ_b_next[x]);
bool b_good = (occ_b_next[x] >= occ_x && occ_a_curr[y] > occ_a_next[y]);
if (a_good && b_good) return {-1};
if (!a_good && !b_good) return {-1};
if(a_good) {
c.push_back(x);
qa.pop();
while(i_a_curr <= i_a_next) {
occ_a_curr[a[i_a_curr]]--;
i_a_curr++;
}
while(b[i_b_curr] != x) {
occ_b_curr[b[i_b_curr]]--;
i_b_curr++;
}
occ_b_curr[b[i_b_curr]]--;
i_b_curr++;
}
else {
c.push_back(y);
qb.pop();
while(i_b_curr <= i_b_next) {
occ_b_curr[b[i_b_curr]]--;
i_b_curr++;
}
while(a[i_a_curr] != y) {
occ_a_curr[a[i_a_curr]]--;
i_a_curr++;
}
occ_a_curr[a[i_a_curr]]--;
i_a_curr++;
}
}
while(!qa.empty()) {
c.push_back(a[qa.front()]);
qa.pop();
}
while(!qb.empty()) {
c.push_back(b[qb.front()]);
qb.pop();
}
return ((is_subsequence(a, c) && is_subsequence(b, c)) ? c : vi({-1}));
}
bool verify_jump(const vi& a, const vi& b, const vi& c) {
if (c == vi({-1})) return false;
if (c == vi()) return true;
int n = a.size();
int m = b.size();
int l = c.size();
vi occ_a(ALPHABET_SIZE, 0);
vi occ_b(ALPHABET_SIZE, 0);
vi occ_c(ALPHABET_SIZE, 0);
vvi pos_a(ALPHABET_SIZE);
vvi pos_b(ALPHABET_SIZE);
vvi pos_c(ALPHABET_SIZE);
for (int i=0; i < n; ++i) {
occ_a[a[i]]++;
pos_a[a[i]].push_back(i);
}
for (int i=0; i < m; ++i) {
occ_b[b[i]]++;
pos_b[b[i]].push_back(i);
}
for (int i=0; i < l; ++i) {
occ_c[c[i]]++;
pos_c[c[i]].push_back(i);
}
vi pos_c_idx(ALPHABET_SIZE);
vi jump_left(l);
for (int i=0; i < l; ++i) jump_left[i] = i;
int c_idx = 0;
for (int j=0; j < m; ++j) {
int idx = pos_c_idx[b[j]];
if (idx < occ_c[b[j]]) {
jump_left[pos_c[b[j]][idx]] = min(jump_left[pos_c[b[j]][idx]], c_idx);
pos_c_idx[b[j]]++;
}
if (b[j] == c[c_idx]) {
// pos_c_idx[b[j]]++;
c_idx++;
if (c_idx == l) break;
}
}
vi jump_right(l);
for (int i=0; i < l; ++i) jump_right[i] = i;
c_idx--;
for (int i=n-1; i > -1; --i) {
int idx = pos_c_idx[a[i]]-1;
if (idx > -1) {
jump_right[pos_c[a[i]][idx]] = max(jump_right[pos_c[a[i]][idx]], c_idx);
pos_c_idx[a[i]]--;
}
if (a[i] == c[c_idx]) {
//pos_c_idx[a[i]]--;
c_idx--;
if (c_idx < 0) break;
}
}
vector<ii> stack_jump;
for (int k=0; k < l; ++k) {
while (!stack_jump.empty() && stack_jump.back().second < k) {
stack_jump.pop_back();
}
if (!stack_jump.empty() && stack_jump.back().first >= jump_left[k]) {
return false;
}
while (!stack_jump.empty() && stack_jump.back().second < jump_right[k]) {
stack_jump.pop_back();
}
stack_jump.emplace_back(k, jump_right[k]);
}
return true;
}
bool verify(const vi& a, const vi& b, const vi& c) {
return verify_jump(a, b, c) && verify_jump(b, a, c);
}
vector<int> ucs(vector<int> a, vector<int> b) {
for (int x : a) ALPHABET_SIZE = max(ALPHABET_SIZE, x+1);
for (int x : b) ALPHABET_SIZE = max(ALPHABET_SIZE, x+1);
vi c = get_candidate(a, b);
if (verify(a, b, c)) return c;
return {-1};
}
}
namespace radewoosh {
//Mateusz Radecki, O(n+m)
#include "hieroglyphs.h"
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
using pii=pair<int,int>;
using pll=pair<ll,ll>;
using vi=vector<int>;
using vll=vector<ll>;
const int nax=1007*1000;
int n, m;
int ilea[nax];
int ileb[nax];
int potrzebuje[nax];
vi pozy[nax];
int potrzebujewa[nax];
int potrzebujewb[nax];
vi licz_harde(vi a, vi b)
{
n=a.size();
m=b.size();
for (int i=0; i<nax; i++)
ilea[i]=ileb[i]=0;
for (int i : a)
ilea[i]++;
for (int i : b)
ileb[i]++;
vector<pii> za, zb;
for (int i=0; i<n; i++)
if (ilea[a[i]]<=ileb[a[i]])
za.push_back({a[i], i});
for (int i=0; i<m; i++)
if (ilea[b[i]]>ileb[b[i]])
zb.push_back({b[i], i});
{
potrzebujewa[zb.size()]=n;
int wsk=zb.size();
for (int i=n-1; i>=0; i--)
{
if (wsk && zb[wsk-1].first==a[i])
{
wsk--;
potrzebujewa[wsk]=i;
}
}
}
{
potrzebujewb[za.size()]=m;
int wsk=za.size();
for (int i=m-1; i>=0; i--)
{
if (wsk && za[wsk-1].first==b[i])
{
wsk--;
potrzebujewb[wsk]=i;
}
}
}
vi ret;
int wska=0;
int wskb=0;
int gdz=0;
for (int i : a)
{
if (wska<(int)za.size() && i==za[wska].first)
{
while(gdz<m && b[gdz]!=i)
gdz++;
if (gdz==m)
return {-1};
gdz++;
ret.push_back(i);
wska++;
}
if (wskb<(int)zb.size() && i==zb[wskb].first && gdz<=zb[wskb].second && potrzebujewb[wska]>zb[wskb].second)
{
ret.push_back(i);
gdz=zb[wskb].second+1;
wskb++;
}
}
if ((int)ret.size()<(int)za.size()+(int)zb.size())
return {-1};
return ret;
}
vi licz_proste(vi a, vi b, int numwy)
{
n=a.size();
m=b.size();
for (int i=0; i<nax; i++)
ilea[i]=ileb[i]=0;
for (int i : a)
ilea[i]++;
for (int i : b)
ileb[i]++;
vector<pii> za;
for (int i=0; i<n; i++)
if (ilea[a[i]]<=ileb[a[i]]-numwy)
za.push_back({a[i], i});
{
potrzebuje[za.size()]=m;
int wsk=za.size();
for (int i=m-1; i>=0; i--)
{
if (wsk && za[wsk-1].first==b[i])
{
wsk--;
potrzebuje[wsk]=i;
}
}
if (wsk)
return {-1};
}
for (int i=0; i<nax; i++)
pozy[i].clear();
for (int i=m-1; i>=0; i--)
pozy[b[i]].push_back(i);
vi ret;
int wsk=0;
int gdz=0;
for (int i : a)
{
if (wsk<(int)za.size() && i==za[wsk].first)
{
while(gdz<m && b[gdz]!=i)
gdz++;
assert(gdz<m);
gdz++;
ret.push_back(i);
wsk++;
}
else
{
while(!pozy[i].empty() && pozy[i].back()<gdz)
pozy[i].pop_back();
if (!pozy[i].empty() && potrzebuje[wsk]>pozy[i].back())
{
ret.push_back(i);
gdz=pozy[i].back()+1;
}
}
}
return ret;
}
vi prosty(vi a, vi b)
{
n=a.size();
m=b.size();
for (int i=0; i<nax; i++)
pozy[i].clear();
for (int i=m-1; i>=0; i--)
pozy[b[i]].push_back(i);
int gdz=0;
vi ret;
for (int i : a)
{
while(!pozy[i].empty() && pozy[i].back()<gdz)
pozy[i].pop_back();
if (!pozy[i].empty())
{
ret.push_back(i);
gdz=pozy[i].back()+1;
}
}
return ret;
}
int zawiera(vi kto, vi kogo)
{
int wsk=0;
for (int i : kto)
if (wsk<(int)kogo.size() && i==kogo[wsk])
wsk++;
return wsk==(int)kogo.size();
}
vi _ucs(vi a, vi b)
{
vi odp=licz_harde(a, b);
vi raz=licz_proste(a, b, 0);
vi dwa=licz_proste(b, a, 1);
reverse(a.begin(), a.end());
reverse(b.begin(), b.end());
vi trz=licz_proste(a, b, 0);
vi czt=licz_proste(b, a, 1);
reverse(a.begin(), a.end());
reverse(b.begin(), b.end());
reverse(trz.begin(), trz.end());
reverse(czt.begin(), czt.end());
vi x=prosty(a, b);
vi y=prosty(b, a);
reverse(a.begin(), a.end());
reverse(b.begin(), b.end());
vi z=prosty(a, b);
vi w=prosty(b, a);
reverse(a.begin(), a.end());
reverse(b.begin(), b.end());
reverse(z.begin(), z.end());
reverse(w.begin(), w.end());
if (zawiera(odp, raz) && zawiera(odp, dwa) && zawiera(odp, trz) && zawiera(odp, czt) && zawiera(odp, x) && zawiera(odp, y) && zawiera(odp, z) && zawiera(odp, w))
return odp;
return {-1};
}
vi ucs(vi a, vi b) {
//return _ucs(a, b);
vi cpref;
vi csuf;
while (!a.empty() && !b.empty() && a.back() == b.back()) {
csuf.push_back(a.back());
a.pop_back();
b.pop_back();
}
reverse(csuf.begin(), csuf.end());
reverse(a.begin(), a.end());
reverse(b.begin(), b.end());
while (!a.empty() && !b.empty() && a.back() == b.back()) {
cpref.push_back(a.back());
a.pop_back();
b.pop_back();
}
reverse(a.begin(), a.end());
reverse(b.begin(), b.end());
vi rc = _ucs(a, b);
if (rc == vi({-1})) return rc;
vi c;
for (int x : cpref) c.push_back(x);
for (int x : rc) c.push_back(x);
for (int x : csuf) c.push_back(x);
return c;
}
}
//erases non-common elements
void clean(vi& a, vi& b) {
vi ap;
vi bp;
set<int> as;
set<int> bs;
for (int x : a) as.insert(x);
for (int x : b) bs.insert(x);
for (int x : a) if (bs.count(x)) ap.push_back(x);
for (int x : b) if (as.count(x)) bp.push_back(x);
swap(a, ap);
swap(b, bp);
}
map<int, int> coordinate_compress(vi& a, vi& b) {
int cc = 0;
map<int, int> mp;
map<int, int> rmp;
for (int& x : a) {
if (!mp.count(x)) {
mp[x] = cc++;
rmp[mp[x]] = x;
}
x = mp[x];
}
for (int& x : b) {
if (!mp.count(x)) {
mp[x] = cc++;
rmp[mp[x]] = x;
}
x = mp[x];
}
return rmp;
}
bool compressed(const vi& a, const vi& b) {
set<int> as;
set<int> bs;
int n = a.size();
int m = b.size();
for (int x : a) as.insert(x);
for (int x : b) bs.insert(x);
for (int x : a) {
if (x >= n) return false;
if (!bs.count(x)) return false;
}
for (int x : b) {
if (x >= m) return false;
if (!as.count(x)) return false;
}
return true;
}
bool is_subsequence(const vi& a, const vi& b) {
int j = 0;
for (int x : a) {
if (j < (int)b.size() && b[j] == x) {
j++;
}
}
return j == (int)b.size();
}
bool _comp = false;
pair<bool, vi> solve(vi a, vi b) {
if (!_comp) {
if (a.empty() || b.empty()) {
return pair<bool, vi>(true, {});
}
if (a.back() == b.back()) {
vi v;
while (!a.empty() && !b.empty() && a.back() == b.back()) {
v.push_back(a.back());
a.pop_back();
b.pop_back();
}
reverse(v.begin(), v.end());
auto p = solve(a, b);
if (p.first) {
for (int x : v) p.second.push_back(x);
}
return p;
}
if (a[0] == b[0]) {
int idx = 0;
while (idx < (int)min(a.size(), b.size()) && a[idx] == b[idx]) {
idx++;
}
vi ap, bp;
for (int i=idx; i < (int) a.size(); ++i) ap.push_back(a[i]);
for (int i=idx; i < (int) b.size(); ++i) bp.push_back(b[i]);
auto p = solve(ap, bp);
if (p.first) {
vi v;
for (int i=0; i < idx; ++i) v.push_back(a[i]);
for (int x : p.second) v.push_back(x);
p.second = v;
}
return p;
}
if (!compressed(a, b)) {
clean(a, b);
if (a.empty() || b.empty()) {
return pair<bool, vi>(true, {});
}
map<int, int> mp = coordinate_compress(a, b);
_comp = true;
auto p = solve(a, b);
if (p.first)
for (int& x : p.second) x = mp[x];
return p;
}
}
//End recursive solving part
vector<function<vi(vi, vi)>> candidates_f = {tomek::ucs, yiping_solexist::ucs, yiping_wa::ucs, felix_wa_jumps::ucs, radewoosh::ucs};
vi c = candidates_f[0](a, b);
//cerr << "Candidate test" << endl;
for (auto f : candidates_f) {
if (c != f(a, b)) return pair<bool, vi>(false, {});
}
if (c == vi({-1})) return pair<bool, vi>(false, c);
return pair<bool, vi>(true, c);
}
vector<int> ucs(vector<int> a, vector<int> b) {
auto p = solve(a, b);
if (p.first) {
return p.second;
}
return {-1};
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
23 ms |
38044 KB |
Output is correct |
2 |
Correct |
4 ms |
26972 KB |
Output is correct |
3 |
Correct |
20 ms |
38044 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
4 ms |
26972 KB |
Output is correct |
2 |
Correct |
18 ms |
38080 KB |
Output is correct |
3 |
Correct |
4 ms |
26972 KB |
Output is correct |
4 |
Correct |
12 ms |
38836 KB |
Output is correct |
5 |
Correct |
30 ms |
30420 KB |
Output is correct |
6 |
Correct |
198 ms |
48972 KB |
Output is correct |
7 |
Correct |
28 ms |
40840 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
4 ms |
26972 KB |
Output is correct |
2 |
Correct |
18 ms |
38080 KB |
Output is correct |
3 |
Correct |
4 ms |
26972 KB |
Output is correct |
4 |
Correct |
12 ms |
38836 KB |
Output is correct |
5 |
Correct |
30 ms |
30420 KB |
Output is correct |
6 |
Correct |
198 ms |
48972 KB |
Output is correct |
7 |
Correct |
28 ms |
40840 KB |
Output is correct |
8 |
Correct |
380 ms |
83244 KB |
Output is correct |
9 |
Correct |
386 ms |
84100 KB |
Output is correct |
10 |
Correct |
378 ms |
83372 KB |
Output is correct |
11 |
Correct |
377 ms |
83420 KB |
Output is correct |
12 |
Correct |
387 ms |
82568 KB |
Output is correct |
13 |
Correct |
537 ms |
82764 KB |
Output is correct |
14 |
Correct |
380 ms |
82744 KB |
Output is correct |
15 |
Correct |
377 ms |
82572 KB |
Output is correct |
16 |
Correct |
384 ms |
82748 KB |
Output is correct |
17 |
Correct |
369 ms |
81876 KB |
Output is correct |
18 |
Correct |
28 ms |
38044 KB |
Output is correct |
19 |
Correct |
22 ms |
49300 KB |
Output is correct |
20 |
Correct |
23 ms |
38176 KB |
Output is correct |
21 |
Correct |
27 ms |
42004 KB |
Output is correct |
22 |
Correct |
175 ms |
71040 KB |
Output is correct |
23 |
Correct |
508 ms |
77696 KB |
Output is correct |
24 |
Correct |
277 ms |
76920 KB |
Output is correct |
25 |
Correct |
283 ms |
76840 KB |
Output is correct |
26 |
Correct |
202 ms |
70556 KB |
Output is correct |
27 |
Correct |
385 ms |
82004 KB |
Output is correct |
28 |
Correct |
381 ms |
83340 KB |
Output is correct |
29 |
Correct |
263 ms |
51768 KB |
Output is correct |
30 |
Correct |
336 ms |
64240 KB |
Output is correct |
31 |
Correct |
424 ms |
83636 KB |
Output is correct |
32 |
Correct |
277 ms |
50256 KB |
Output is correct |
33 |
Correct |
337 ms |
59452 KB |
Output is correct |
34 |
Correct |
245 ms |
53456 KB |
Output is correct |
35 |
Correct |
355 ms |
82532 KB |
Output is correct |
36 |
Correct |
349 ms |
82672 KB |
Output is correct |
37 |
Correct |
354 ms |
82712 KB |
Output is correct |
38 |
Correct |
346 ms |
82608 KB |
Output is correct |
39 |
Correct |
331 ms |
54828 KB |
Output is correct |
40 |
Correct |
323 ms |
63976 KB |
Output is correct |
41 |
Correct |
423 ms |
82740 KB |
Output is correct |
42 |
Correct |
250 ms |
50580 KB |
Output is correct |
43 |
Correct |
320 ms |
63324 KB |
Output is correct |
44 |
Correct |
384 ms |
82780 KB |
Output is correct |
45 |
Correct |
351 ms |
82572 KB |
Output is correct |
46 |
Correct |
338 ms |
61052 KB |
Output is correct |
47 |
Correct |
348 ms |
82652 KB |
Output is correct |
48 |
Correct |
279 ms |
50332 KB |
Output is correct |
49 |
Correct |
270 ms |
50232 KB |
Output is correct |
50 |
Correct |
516 ms |
82584 KB |
Output is correct |
51 |
Correct |
468 ms |
83448 KB |
Output is correct |
52 |
Correct |
380 ms |
63416 KB |
Output is correct |
53 |
Correct |
406 ms |
84712 KB |
Output is correct |
54 |
Correct |
362 ms |
81992 KB |
Output is correct |
55 |
Correct |
334 ms |
62676 KB |
Output is correct |
56 |
Correct |
442 ms |
82584 KB |
Output is correct |
57 |
Correct |
279 ms |
50432 KB |
Output is correct |
58 |
Correct |
349 ms |
58628 KB |
Output is correct |
59 |
Correct |
273 ms |
50392 KB |
Output is correct |
60 |
Correct |
323 ms |
82660 KB |
Output is correct |
61 |
Correct |
330 ms |
65916 KB |
Output is correct |
62 |
Correct |
312 ms |
58364 KB |
Output is correct |
63 |
Correct |
346 ms |
82044 KB |
Output is correct |
64 |
Correct |
245 ms |
54392 KB |
Output is correct |
65 |
Correct |
312 ms |
59248 KB |
Output is correct |
66 |
Correct |
367 ms |
83324 KB |
Output is correct |
67 |
Correct |
386 ms |
81948 KB |
Output is correct |
68 |
Correct |
293 ms |
58356 KB |
Output is correct |
69 |
Correct |
21 ms |
38044 KB |
Output is correct |
70 |
Correct |
16 ms |
38044 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
24 ms |
30420 KB |
Output is correct |
2 |
Correct |
24 ms |
30552 KB |
Output is correct |
3 |
Correct |
278 ms |
71112 KB |
Output is correct |
4 |
Correct |
281 ms |
70460 KB |
Output is correct |
5 |
Correct |
270 ms |
71800 KB |
Output is correct |
6 |
Correct |
162 ms |
67148 KB |
Output is correct |
7 |
Correct |
4 ms |
26968 KB |
Output is correct |
8 |
Correct |
4 ms |
26972 KB |
Output is correct |
9 |
Correct |
3 ms |
27104 KB |
Output is correct |
10 |
Correct |
4 ms |
26972 KB |
Output is correct |
11 |
Correct |
21 ms |
38084 KB |
Output is correct |
12 |
Correct |
22 ms |
38044 KB |
Output is correct |
13 |
Correct |
21 ms |
38044 KB |
Output is correct |
14 |
Correct |
29 ms |
38044 KB |
Output is correct |
15 |
Correct |
27 ms |
38104 KB |
Output is correct |
16 |
Correct |
317 ms |
69580 KB |
Output is correct |
17 |
Correct |
50 ms |
47740 KB |
Output is correct |
18 |
Correct |
218 ms |
66784 KB |
Output is correct |
19 |
Correct |
38 ms |
42404 KB |
Output is correct |
20 |
Correct |
297 ms |
67568 KB |
Output is correct |
21 |
Correct |
48 ms |
43728 KB |
Output is correct |
22 |
Correct |
55 ms |
47708 KB |
Output is correct |
23 |
Correct |
33 ms |
44384 KB |
Output is correct |
24 |
Correct |
72 ms |
52248 KB |
Output is correct |
25 |
Correct |
38 ms |
43280 KB |
Output is correct |
26 |
Correct |
36 ms |
46888 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
380 ms |
83244 KB |
Output is correct |
2 |
Correct |
386 ms |
84100 KB |
Output is correct |
3 |
Correct |
378 ms |
83372 KB |
Output is correct |
4 |
Correct |
377 ms |
83420 KB |
Output is correct |
5 |
Correct |
387 ms |
82568 KB |
Output is correct |
6 |
Correct |
537 ms |
82764 KB |
Output is correct |
7 |
Correct |
380 ms |
82744 KB |
Output is correct |
8 |
Correct |
377 ms |
82572 KB |
Output is correct |
9 |
Correct |
384 ms |
82748 KB |
Output is correct |
10 |
Correct |
369 ms |
81876 KB |
Output is correct |
11 |
Correct |
28 ms |
38044 KB |
Output is correct |
12 |
Correct |
22 ms |
49300 KB |
Output is correct |
13 |
Correct |
23 ms |
38176 KB |
Output is correct |
14 |
Correct |
27 ms |
42004 KB |
Output is correct |
15 |
Correct |
175 ms |
71040 KB |
Output is correct |
16 |
Correct |
508 ms |
77696 KB |
Output is correct |
17 |
Correct |
277 ms |
76920 KB |
Output is correct |
18 |
Correct |
283 ms |
76840 KB |
Output is correct |
19 |
Correct |
202 ms |
70556 KB |
Output is correct |
20 |
Correct |
24 ms |
30420 KB |
Output is correct |
21 |
Correct |
24 ms |
30552 KB |
Output is correct |
22 |
Correct |
278 ms |
71112 KB |
Output is correct |
23 |
Correct |
281 ms |
70460 KB |
Output is correct |
24 |
Correct |
270 ms |
71800 KB |
Output is correct |
25 |
Correct |
162 ms |
67148 KB |
Output is correct |
26 |
Correct |
59 ms |
62332 KB |
Output is correct |
27 |
Correct |
45 ms |
46400 KB |
Output is correct |
28 |
Correct |
60 ms |
62584 KB |
Output is correct |
29 |
Correct |
45 ms |
51608 KB |
Output is correct |
30 |
Correct |
27 ms |
41112 KB |
Output is correct |
31 |
Correct |
63 ms |
58844 KB |
Output is correct |
32 |
Correct |
59 ms |
59120 KB |
Output is correct |
33 |
Correct |
54 ms |
49720 KB |
Output is correct |
34 |
Correct |
100 ms |
65224 KB |
Output is correct |
35 |
Correct |
194 ms |
72704 KB |
Output is correct |
36 |
Correct |
171 ms |
74616 KB |
Output is correct |
37 |
Correct |
198 ms |
73560 KB |
Output is correct |
38 |
Correct |
280 ms |
72760 KB |
Output is correct |
39 |
Correct |
214 ms |
72788 KB |
Output is correct |
40 |
Correct |
314 ms |
78372 KB |
Output is correct |
41 |
Correct |
263 ms |
73384 KB |
Output is correct |
42 |
Correct |
155 ms |
71160 KB |
Output is correct |
43 |
Correct |
139 ms |
69204 KB |
Output is correct |
44 |
Correct |
105 ms |
68652 KB |
Output is correct |
45 |
Correct |
118 ms |
67340 KB |
Output is correct |
46 |
Correct |
317 ms |
77324 KB |
Output is correct |
47 |
Correct |
304 ms |
77264 KB |
Output is correct |
48 |
Correct |
290 ms |
76556 KB |
Output is correct |
49 |
Correct |
324 ms |
76464 KB |
Output is correct |
50 |
Correct |
300 ms |
75900 KB |
Output is correct |
51 |
Correct |
289 ms |
75788 KB |
Output is correct |
52 |
Correct |
323 ms |
75720 KB |
Output is correct |
53 |
Correct |
299 ms |
75812 KB |
Output is correct |
54 |
Correct |
286 ms |
75040 KB |
Output is correct |
55 |
Correct |
49 ms |
50376 KB |
Output is correct |
56 |
Correct |
138 ms |
71804 KB |
Output is correct |
57 |
Correct |
141 ms |
70424 KB |
Output is correct |
58 |
Correct |
157 ms |
72384 KB |
Output is correct |
59 |
Correct |
215 ms |
71784 KB |
Output is correct |
60 |
Correct |
278 ms |
73484 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
4 ms |
26968 KB |
Output is correct |
2 |
Correct |
4 ms |
26972 KB |
Output is correct |
3 |
Correct |
3 ms |
27104 KB |
Output is correct |
4 |
Correct |
4 ms |
26972 KB |
Output is correct |
5 |
Correct |
21 ms |
38084 KB |
Output is correct |
6 |
Correct |
22 ms |
38044 KB |
Output is correct |
7 |
Correct |
21 ms |
38044 KB |
Output is correct |
8 |
Correct |
29 ms |
38044 KB |
Output is correct |
9 |
Correct |
27 ms |
38104 KB |
Output is correct |
10 |
Correct |
59 ms |
62332 KB |
Output is correct |
11 |
Correct |
45 ms |
46400 KB |
Output is correct |
12 |
Correct |
60 ms |
62584 KB |
Output is correct |
13 |
Correct |
45 ms |
51608 KB |
Output is correct |
14 |
Correct |
27 ms |
41112 KB |
Output is correct |
15 |
Correct |
63 ms |
58844 KB |
Output is correct |
16 |
Correct |
59 ms |
59120 KB |
Output is correct |
17 |
Correct |
54 ms |
49720 KB |
Output is correct |
18 |
Correct |
61 ms |
59756 KB |
Output is correct |
19 |
Correct |
60 ms |
57824 KB |
Output is correct |
20 |
Correct |
82 ms |
58924 KB |
Output is correct |
21 |
Correct |
57 ms |
54364 KB |
Output is correct |
22 |
Correct |
17 ms |
38368 KB |
Output is correct |
23 |
Correct |
15 ms |
38280 KB |
Output is correct |
24 |
Correct |
17 ms |
39192 KB |
Output is correct |
25 |
Correct |
32 ms |
55200 KB |
Output is correct |
26 |
Correct |
50 ms |
57488 KB |
Output is correct |
27 |
Correct |
71 ms |
49876 KB |
Output is correct |
28 |
Correct |
52 ms |
53112 KB |
Output is correct |
29 |
Correct |
68 ms |
61020 KB |
Output is correct |
30 |
Correct |
57 ms |
61476 KB |
Output is correct |
31 |
Correct |
56 ms |
60148 KB |
Output is correct |
32 |
Correct |
65 ms |
54800 KB |
Output is correct |
33 |
Correct |
16 ms |
38076 KB |
Output is correct |
34 |
Correct |
16 ms |
38040 KB |
Output is correct |
35 |
Correct |
18 ms |
38172 KB |
Output is correct |
36 |
Correct |
15 ms |
38300 KB |
Output is correct |
37 |
Correct |
25 ms |
38324 KB |
Output is correct |
38 |
Correct |
33 ms |
38300 KB |
Output is correct |
39 |
Correct |
25 ms |
48540 KB |
Output is correct |
40 |
Correct |
14 ms |
38044 KB |
Output is correct |
41 |
Correct |
16 ms |
41256 KB |
Output is correct |
42 |
Correct |
47 ms |
56548 KB |
Output is correct |
43 |
Correct |
15 ms |
38300 KB |
Output is correct |
44 |
Correct |
15 ms |
38232 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
23 ms |
38044 KB |
Output is correct |
2 |
Correct |
4 ms |
26972 KB |
Output is correct |
3 |
Correct |
20 ms |
38044 KB |
Output is correct |
4 |
Correct |
4 ms |
26972 KB |
Output is correct |
5 |
Correct |
18 ms |
38080 KB |
Output is correct |
6 |
Correct |
4 ms |
26972 KB |
Output is correct |
7 |
Correct |
12 ms |
38836 KB |
Output is correct |
8 |
Correct |
30 ms |
30420 KB |
Output is correct |
9 |
Correct |
198 ms |
48972 KB |
Output is correct |
10 |
Correct |
28 ms |
40840 KB |
Output is correct |
11 |
Correct |
380 ms |
83244 KB |
Output is correct |
12 |
Correct |
386 ms |
84100 KB |
Output is correct |
13 |
Correct |
378 ms |
83372 KB |
Output is correct |
14 |
Correct |
377 ms |
83420 KB |
Output is correct |
15 |
Correct |
387 ms |
82568 KB |
Output is correct |
16 |
Correct |
537 ms |
82764 KB |
Output is correct |
17 |
Correct |
380 ms |
82744 KB |
Output is correct |
18 |
Correct |
377 ms |
82572 KB |
Output is correct |
19 |
Correct |
384 ms |
82748 KB |
Output is correct |
20 |
Correct |
369 ms |
81876 KB |
Output is correct |
21 |
Correct |
28 ms |
38044 KB |
Output is correct |
22 |
Correct |
22 ms |
49300 KB |
Output is correct |
23 |
Correct |
23 ms |
38176 KB |
Output is correct |
24 |
Correct |
27 ms |
42004 KB |
Output is correct |
25 |
Correct |
175 ms |
71040 KB |
Output is correct |
26 |
Correct |
508 ms |
77696 KB |
Output is correct |
27 |
Correct |
277 ms |
76920 KB |
Output is correct |
28 |
Correct |
283 ms |
76840 KB |
Output is correct |
29 |
Correct |
202 ms |
70556 KB |
Output is correct |
30 |
Correct |
385 ms |
82004 KB |
Output is correct |
31 |
Correct |
381 ms |
83340 KB |
Output is correct |
32 |
Correct |
263 ms |
51768 KB |
Output is correct |
33 |
Correct |
336 ms |
64240 KB |
Output is correct |
34 |
Correct |
424 ms |
83636 KB |
Output is correct |
35 |
Correct |
277 ms |
50256 KB |
Output is correct |
36 |
Correct |
337 ms |
59452 KB |
Output is correct |
37 |
Correct |
245 ms |
53456 KB |
Output is correct |
38 |
Correct |
355 ms |
82532 KB |
Output is correct |
39 |
Correct |
349 ms |
82672 KB |
Output is correct |
40 |
Correct |
354 ms |
82712 KB |
Output is correct |
41 |
Correct |
346 ms |
82608 KB |
Output is correct |
42 |
Correct |
331 ms |
54828 KB |
Output is correct |
43 |
Correct |
323 ms |
63976 KB |
Output is correct |
44 |
Correct |
423 ms |
82740 KB |
Output is correct |
45 |
Correct |
250 ms |
50580 KB |
Output is correct |
46 |
Correct |
320 ms |
63324 KB |
Output is correct |
47 |
Correct |
384 ms |
82780 KB |
Output is correct |
48 |
Correct |
351 ms |
82572 KB |
Output is correct |
49 |
Correct |
338 ms |
61052 KB |
Output is correct |
50 |
Correct |
348 ms |
82652 KB |
Output is correct |
51 |
Correct |
279 ms |
50332 KB |
Output is correct |
52 |
Correct |
270 ms |
50232 KB |
Output is correct |
53 |
Correct |
516 ms |
82584 KB |
Output is correct |
54 |
Correct |
468 ms |
83448 KB |
Output is correct |
55 |
Correct |
380 ms |
63416 KB |
Output is correct |
56 |
Correct |
406 ms |
84712 KB |
Output is correct |
57 |
Correct |
362 ms |
81992 KB |
Output is correct |
58 |
Correct |
334 ms |
62676 KB |
Output is correct |
59 |
Correct |
442 ms |
82584 KB |
Output is correct |
60 |
Correct |
279 ms |
50432 KB |
Output is correct |
61 |
Correct |
349 ms |
58628 KB |
Output is correct |
62 |
Correct |
273 ms |
50392 KB |
Output is correct |
63 |
Correct |
323 ms |
82660 KB |
Output is correct |
64 |
Correct |
330 ms |
65916 KB |
Output is correct |
65 |
Correct |
312 ms |
58364 KB |
Output is correct |
66 |
Correct |
346 ms |
82044 KB |
Output is correct |
67 |
Correct |
245 ms |
54392 KB |
Output is correct |
68 |
Correct |
312 ms |
59248 KB |
Output is correct |
69 |
Correct |
367 ms |
83324 KB |
Output is correct |
70 |
Correct |
386 ms |
81948 KB |
Output is correct |
71 |
Correct |
293 ms |
58356 KB |
Output is correct |
72 |
Correct |
21 ms |
38044 KB |
Output is correct |
73 |
Correct |
16 ms |
38044 KB |
Output is correct |
74 |
Correct |
24 ms |
30420 KB |
Output is correct |
75 |
Correct |
24 ms |
30552 KB |
Output is correct |
76 |
Correct |
278 ms |
71112 KB |
Output is correct |
77 |
Correct |
281 ms |
70460 KB |
Output is correct |
78 |
Correct |
270 ms |
71800 KB |
Output is correct |
79 |
Correct |
162 ms |
67148 KB |
Output is correct |
80 |
Correct |
4 ms |
26968 KB |
Output is correct |
81 |
Correct |
4 ms |
26972 KB |
Output is correct |
82 |
Correct |
3 ms |
27104 KB |
Output is correct |
83 |
Correct |
4 ms |
26972 KB |
Output is correct |
84 |
Correct |
21 ms |
38084 KB |
Output is correct |
85 |
Correct |
22 ms |
38044 KB |
Output is correct |
86 |
Correct |
21 ms |
38044 KB |
Output is correct |
87 |
Correct |
29 ms |
38044 KB |
Output is correct |
88 |
Correct |
27 ms |
38104 KB |
Output is correct |
89 |
Correct |
317 ms |
69580 KB |
Output is correct |
90 |
Correct |
50 ms |
47740 KB |
Output is correct |
91 |
Correct |
218 ms |
66784 KB |
Output is correct |
92 |
Correct |
38 ms |
42404 KB |
Output is correct |
93 |
Correct |
297 ms |
67568 KB |
Output is correct |
94 |
Correct |
48 ms |
43728 KB |
Output is correct |
95 |
Correct |
55 ms |
47708 KB |
Output is correct |
96 |
Correct |
33 ms |
44384 KB |
Output is correct |
97 |
Correct |
72 ms |
52248 KB |
Output is correct |
98 |
Correct |
38 ms |
43280 KB |
Output is correct |
99 |
Correct |
36 ms |
46888 KB |
Output is correct |
100 |
Correct |
59 ms |
62332 KB |
Output is correct |
101 |
Correct |
45 ms |
46400 KB |
Output is correct |
102 |
Correct |
60 ms |
62584 KB |
Output is correct |
103 |
Correct |
45 ms |
51608 KB |
Output is correct |
104 |
Correct |
27 ms |
41112 KB |
Output is correct |
105 |
Correct |
63 ms |
58844 KB |
Output is correct |
106 |
Correct |
59 ms |
59120 KB |
Output is correct |
107 |
Correct |
54 ms |
49720 KB |
Output is correct |
108 |
Correct |
100 ms |
65224 KB |
Output is correct |
109 |
Correct |
194 ms |
72704 KB |
Output is correct |
110 |
Correct |
171 ms |
74616 KB |
Output is correct |
111 |
Correct |
198 ms |
73560 KB |
Output is correct |
112 |
Correct |
280 ms |
72760 KB |
Output is correct |
113 |
Correct |
214 ms |
72788 KB |
Output is correct |
114 |
Correct |
314 ms |
78372 KB |
Output is correct |
115 |
Correct |
263 ms |
73384 KB |
Output is correct |
116 |
Correct |
155 ms |
71160 KB |
Output is correct |
117 |
Correct |
139 ms |
69204 KB |
Output is correct |
118 |
Correct |
105 ms |
68652 KB |
Output is correct |
119 |
Correct |
118 ms |
67340 KB |
Output is correct |
120 |
Correct |
317 ms |
77324 KB |
Output is correct |
121 |
Correct |
304 ms |
77264 KB |
Output is correct |
122 |
Correct |
290 ms |
76556 KB |
Output is correct |
123 |
Correct |
324 ms |
76464 KB |
Output is correct |
124 |
Correct |
300 ms |
75900 KB |
Output is correct |
125 |
Correct |
289 ms |
75788 KB |
Output is correct |
126 |
Correct |
323 ms |
75720 KB |
Output is correct |
127 |
Correct |
299 ms |
75812 KB |
Output is correct |
128 |
Correct |
286 ms |
75040 KB |
Output is correct |
129 |
Correct |
49 ms |
50376 KB |
Output is correct |
130 |
Correct |
138 ms |
71804 KB |
Output is correct |
131 |
Correct |
141 ms |
70424 KB |
Output is correct |
132 |
Correct |
157 ms |
72384 KB |
Output is correct |
133 |
Correct |
215 ms |
71784 KB |
Output is correct |
134 |
Correct |
278 ms |
73484 KB |
Output is correct |
135 |
Correct |
61 ms |
59756 KB |
Output is correct |
136 |
Correct |
60 ms |
57824 KB |
Output is correct |
137 |
Correct |
82 ms |
58924 KB |
Output is correct |
138 |
Correct |
57 ms |
54364 KB |
Output is correct |
139 |
Correct |
17 ms |
38368 KB |
Output is correct |
140 |
Correct |
15 ms |
38280 KB |
Output is correct |
141 |
Correct |
17 ms |
39192 KB |
Output is correct |
142 |
Correct |
32 ms |
55200 KB |
Output is correct |
143 |
Correct |
50 ms |
57488 KB |
Output is correct |
144 |
Correct |
71 ms |
49876 KB |
Output is correct |
145 |
Correct |
52 ms |
53112 KB |
Output is correct |
146 |
Correct |
68 ms |
61020 KB |
Output is correct |
147 |
Correct |
57 ms |
61476 KB |
Output is correct |
148 |
Correct |
56 ms |
60148 KB |
Output is correct |
149 |
Correct |
65 ms |
54800 KB |
Output is correct |
150 |
Correct |
16 ms |
38076 KB |
Output is correct |
151 |
Correct |
16 ms |
38040 KB |
Output is correct |
152 |
Correct |
18 ms |
38172 KB |
Output is correct |
153 |
Correct |
15 ms |
38300 KB |
Output is correct |
154 |
Correct |
25 ms |
38324 KB |
Output is correct |
155 |
Correct |
33 ms |
38300 KB |
Output is correct |
156 |
Correct |
25 ms |
48540 KB |
Output is correct |
157 |
Correct |
14 ms |
38044 KB |
Output is correct |
158 |
Correct |
16 ms |
41256 KB |
Output is correct |
159 |
Correct |
47 ms |
56548 KB |
Output is correct |
160 |
Correct |
15 ms |
38300 KB |
Output is correct |
161 |
Correct |
15 ms |
38232 KB |
Output is correct |
162 |
Correct |
148 ms |
70972 KB |
Output is correct |
163 |
Correct |
43 ms |
63564 KB |
Output is correct |
164 |
Incorrect |
88 ms |
64416 KB |
Output isn't correct |
165 |
Halted |
0 ms |
0 KB |
- |