Submission #1099847

# Submission time Handle Problem Language Result Execution time Memory
1099847 2024-10-12T05:36:01 Z model_code Hieroglyphs (IOI24_hieroglyphs) C++17
16 / 100
190 ms 10988 KB
// incorrect/author-solexist.cpp

#include "hieroglyphs.h"
#include<bits/stdc++.h>

using namespace std;

using vi = vector<int>;
using vvi = vector<vi>;

//erases non-common elements
void clean(vi& a, vi& b) {
    vi ap;
    vi bp;
    set<int> as;
    set<int> bs;
    for (int x : a) as.insert(x);
    for (int x : b) bs.insert(x);
    for (int x : a) if (bs.count(x)) ap.push_back(x);
    for (int x : b) if (as.count(x)) bp.push_back(x);
    swap(a, ap);
    swap(b, bp);
}

map<int, int> coordinate_compress(vi& a, vi& b) {
    int cc = 0;
    map<int, int> mp;
    map<int, int> rmp;
    for (int& x : a) {
        if (!mp.count(x)) {
            mp[x] = cc++;
            rmp[mp[x]] = x;
        }
        x = mp[x];
    }
    for (int& x : b) {
        if (!mp.count(x)) {
            mp[x] = cc++;
            rmp[mp[x]] = x;
        }
        x = mp[x];
    }
    return rmp;
}

bool is_subsequence(const vi& a, const vi& b) {
    int j = 0;
    for (int x : a) {
        if (j < (int)b.size() && b[j] == x) {
            j++;
        }
    }
    return j == (int)b.size();
}

vector<int> get_candidate(vector<int> a, vector<int> b) {
    int n = a.size();
    int m = b.size();

    vi occ_a(max(n, m)+1, 0);
    vi occ_b(max(n, m)+1, 0);
    for (int i=0; i < n; ++i) {
        occ_a[a[i]]++;
    }
    for (int i=0; i < m; ++i) {
        occ_b[b[i]]++;
    }

    vi c;
    queue<int> qa;
    queue<int> qb;

    for (int i=0; i < n; ++i) {
        if (occ_a[a[i]] <= occ_b[a[i]]) {
            qa.push(i);
        }
    }
    for (int i=0; i < m; ++i) {
        if (occ_a[b[i]] > occ_b[b[i]]) {
            qb.push(i);
        }
    }

    int i_a_curr = 0;
    int i_b_curr = 0;
    int i_a_next = 0;
    int i_b_next = 0;
    vi occ_a_curr = vi(occ_a);
    vi occ_a_next = vi(occ_a);
    vi occ_b_curr = vi(occ_b);
    vi occ_b_next = vi(occ_b);

    while(!qa.empty() && !qb.empty()) {
        while(i_a_next < qa.front()) {
            occ_a_next[a[i_a_next]]--;
            i_a_next++;
        }
        while(i_b_next < qb.front()) {
            occ_b_next[b[i_b_next]]--;
            i_b_next++;
        }

        int x = a[i_a_next];
        int y = b[i_b_next];

        int occ_x = occ_a_next[x];
        int occ_y = occ_b_next[y];

        bool a_good = (occ_a_next[y] >= occ_y && occ_b_curr[x] > occ_b_next[x]);
        bool b_good = (occ_b_next[x] >= occ_x && occ_a_curr[y] > occ_a_next[y]);

        if (a_good && b_good) return vi();
        if (!a_good && !b_good) return vi();

        if(a_good) {
            c.push_back(x);
            qa.pop();
            while(i_a_curr <= i_a_next) {
                occ_a_curr[a[i_a_curr]]--;
                i_a_curr++;
            }
            while(b[i_b_curr] != x) {
                occ_b_curr[b[i_b_curr]]--;
                i_b_curr++;
            }
            occ_b_curr[b[i_b_curr]]--;
            i_b_curr++;
        }
        else {
            c.push_back(y);
            qb.pop();
            while(i_b_curr <= i_b_next) {
                occ_b_curr[b[i_b_curr]]--;
                i_b_curr++;
            }
            while(a[i_a_curr] != y) {
                occ_a_curr[a[i_a_curr]]--;
                i_a_curr++;
            }
            occ_a_curr[a[i_a_curr]]--;
            i_a_curr++;
        }
    }

    while(!qa.empty()) {
        c.push_back(a[qa.front()]);
        qa.pop();
    }
    while(!qb.empty()) {
        c.push_back(b[qb.front()]);
        qb.pop();
    }

    return ((is_subsequence(a, c) && is_subsequence(b, c)) ? c : vi());
}




//returns v of size |b|
//v[i] = smallest index so that there exists a common subsequence of a[0..v[i]] and b[0..i] that is not
// a common subsequence of a[0..v[i]] and b[0..i-1]. if such index does not exist, v[i] = |a|
vector<int> index_vector(const vi& a, const vi& b) {
    int n = a.size();
    int m = b.size();
    vi v(m);
    int max_v = 0;
    for (int x : a) max_v = max(x, max_v);
    for (int x : b) max_v = max(x, max_v);
    vi prev_occ_b(max_v+1, -1);
    vvi a_occ(max_v+1);
    for (int i=0; i < n; ++i) {
        a_occ[a[i]].push_back(i);
    }
    for (int i=0; i <= max_v; ++i) {
        a_occ[i].push_back(n);
    }
    vector<pair<int, int>> min_stack;
    for (int i=0; i < m; ++i) {
        if (prev_occ_b[b[i]] == -1) {
            v[i] = a_occ[b[i]][0];
        }
        else {
            int min_val = lower_bound(min_stack.begin(), min_stack.end(), pair<int, int>(prev_occ_b[b[i]], -1))->second;
            if (min_val < n) v[i] = *lower_bound(a_occ[b[i]].begin(), a_occ[b[i]].end(), min_val+1);
            else v[i] = n;
        }
        while(!min_stack.empty() && min_stack.back().second >= v[i]) {
            min_stack.pop_back();
        }
        min_stack.emplace_back(i, v[i]);
        prev_occ_b[b[i]] = i;
    }
    return v; 
}

// RMQ template from KACTL
template<class T>
struct RMQ {
	vector<vector<T>> jmp;
	RMQ(const vector<T>& V) : jmp(1, V) {
		for (int pw = 1, k = 1; pw * 2 <= (int)V.size(); pw *= 2, ++k) {
			jmp.emplace_back((int)V.size() - pw * 2 + 1);
			for (int j=0; j < (int)jmp[k].size(); ++j)
				jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
		}
	}
	T query(int a, int b) {
		int dep = 31 - __builtin_clz(b - a);
		return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);
	}
};

bool no_single_crossing(const vi& a, const vi& b, const vi& c) {
    int n = a.size();
    int m = b.size();
    int l = c.size(); 

    vi rb = vi(b);
    reverse(rb.begin(), rb.end());

    vi rc = vi(c);
    reverse(rc.begin(), rc.end());

    vi v_ab = index_vector(a, b);
    vi v_rbc = index_vector(rb, rc);
    
    RMQ<int> v_rbc_rmq = RMQ<int>(v_rbc);

    vi v_max_rc_i(n+1);
    v_max_rc_i[n] = 0;
    for (int i=n-1; i >= 0; --i) {
        v_max_rc_i[i] = v_max_rc_i[i+1];
        if (a[i] == rc[v_max_rc_i[i+1]]) {
            v_max_rc_i[i]++;
        }
        if (v_max_rc_i[i] > l) v_max_rc_i[i] = l;
    }
    vi v_min_rc_i(m+1);
    v_min_rc_i[0] = l-1;
    for (int i=0; i < m; ++i) {
        v_min_rc_i[i+1] = v_min_rc_i[i];
        if (b[i] == rc[v_min_rc_i[i]]) {
            v_min_rc_i[i+1]--;
        }
        if (v_min_rc_i[i] < -1) v_min_rc_i[i] = -1;
    }

    for (int j=0; j < m; ++j) {
        int ai = v_ab[j];
        if (ai == n) continue;
        int min_rc_i = v_min_rc_i[j+1];
        int max_rc_i = v_max_rc_i[ai+1];
        if (min_rc_i+1 < max_rc_i && v_rbc_rmq.query(min_rc_i+1, max_rc_i) + j < m-1) return false;
    }
    return true;
}

bool verify(const vi& a, const vi& b, const vi& c) {
    if (c.empty()) return false;
    return no_single_crossing(a, b, c) && no_single_crossing(b, a, c);    
}

vector<int> ucs(vector<int> a, vector<int> b) {
    clean(a, b);
    if (a.empty() || b.empty()) {
		return vector<int>();
    }
    map<int, int> mp = coordinate_compress(a, b);
    vi c = get_candidate(a, b);
	for (int& x : c) x = mp[x];

	return c;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Incorrect 0 ms 348 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Incorrect 0 ms 348 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Incorrect 0 ms 348 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 32 ms 6328 KB Output is correct
2 Correct 37 ms 6336 KB Output is correct
3 Correct 24 ms 5736 KB Output is correct
4 Correct 26 ms 5476 KB Output is correct
5 Correct 49 ms 6240 KB Output is correct
6 Correct 14 ms 4236 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Incorrect 0 ms 348 KB Output isn't correct
13 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 32 ms 6328 KB Output is correct
2 Correct 37 ms 6336 KB Output is correct
3 Correct 24 ms 5736 KB Output is correct
4 Correct 26 ms 5476 KB Output is correct
5 Correct 49 ms 6240 KB Output is correct
6 Correct 14 ms 4236 KB Output is correct
7 Correct 190 ms 10816 KB Output is correct
8 Correct 173 ms 10848 KB Output is correct
9 Correct 163 ms 10836 KB Output is correct
10 Correct 171 ms 10780 KB Output is correct
11 Correct 168 ms 10936 KB Output is correct
12 Correct 159 ms 10988 KB Output is correct
13 Correct 166 ms 10788 KB Output is correct
14 Correct 153 ms 10912 KB Output is correct
15 Correct 147 ms 10768 KB Output is correct
16 Correct 156 ms 10928 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 2 ms 604 KB Output is correct
21 Correct 98 ms 6136 KB Output is correct
22 Correct 129 ms 10244 KB Output is correct
23 Correct 121 ms 10284 KB Output is correct
24 Correct 153 ms 10384 KB Output is correct
25 Correct 76 ms 6588 KB Output is correct
26 Correct 1 ms 348 KB Output is correct
27 Correct 1 ms 348 KB Output is correct
28 Correct 1 ms 348 KB Output is correct
29 Correct 1 ms 348 KB Output is correct
30 Correct 1 ms 348 KB Output is correct
31 Correct 2 ms 604 KB Output is correct
32 Correct 1 ms 604 KB Output is correct
33 Correct 2 ms 604 KB Output is correct
34 Correct 7 ms 1844 KB Output is correct
35 Correct 28 ms 6004 KB Output is correct
36 Correct 46 ms 6988 KB Output is correct
37 Correct 41 ms 6460 KB Output is correct
38 Correct 54 ms 6396 KB Output is correct
39 Correct 30 ms 6324 KB Output is correct
40 Correct 126 ms 9624 KB Output is correct
41 Correct 82 ms 7320 KB Output is correct
42 Correct 45 ms 4924 KB Output is correct
43 Correct 28 ms 5112 KB Output is correct
44 Correct 25 ms 4956 KB Output is correct
45 Correct 23 ms 4656 KB Output is correct
46 Correct 127 ms 8456 KB Output is correct
47 Correct 111 ms 8408 KB Output is correct
48 Correct 135 ms 8364 KB Output is correct
49 Correct 132 ms 8288 KB Output is correct
50 Correct 108 ms 8284 KB Output is correct
51 Correct 138 ms 8360 KB Output is correct
52 Correct 118 ms 7816 KB Output is correct
53 Correct 109 ms 7736 KB Output is correct
54 Correct 98 ms 7604 KB Output is correct
55 Correct 15 ms 2384 KB Output is correct
56 Correct 63 ms 6360 KB Output is correct
57 Correct 37 ms 5940 KB Output is correct
58 Correct 43 ms 6432 KB Output is correct
59 Correct 83 ms 6676 KB Output is correct
60 Correct 106 ms 7340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Incorrect 0 ms 348 KB Output isn't correct
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Incorrect 0 ms 348 KB Output isn't correct
4 Halted 0 ms 0 KB -