// time_limit_and_runtime_error/felix-multiple-heuristics.cpp
#include<bits/stdc++.h>
#include "hieroglyphs.h"
using namespace std;
using vi = vector<int>;
using vvi = vector<vi>;
//erases non-common elements
void clean(vi& a, vi& b) {
vi ap;
vi bp;
set<int> as;
set<int> bs;
for (int x : a) as.insert(x);
for (int x : b) bs.insert(x);
for (int x : a) if (bs.count(x)) ap.push_back(x);
for (int x : b) if (as.count(x)) bp.push_back(x);
swap(a, ap);
swap(b, bp);
}
map<int, int> coordinate_compress(vi& a, vi& b) {
int cc = 0;
map<int, int> mp;
map<int, int> rmp;
for (int& x : a) {
if (!mp.count(x)) {
mp[x] = cc++;
rmp[mp[x]] = x;
}
x = mp[x];
}
for (int& x : b) {
if (!mp.count(x)) {
mp[x] = cc++;
rmp[mp[x]] = x;
}
x = mp[x];
}
return rmp;
}
bool compressed(const vi& a, const vi& b) {
set<int> as;
set<int> bs;
int n = a.size();
int m = b.size();
for (int x : a) as.insert(x);
for (int x : b) bs.insert(x);
for (int x : a) {
if (x >= n) return false;
if (!bs.count(x)) return false;
}
for (int x : b) {
if (x >= m) return false;
if (!as.count(x)) return false;
}
return true;
}
bool is_subsequence(const vi& a, const vi& b) {
int j = 0;
for (int x : a) {
if (j < (int)b.size() && b[j] == x) {
j++;
}
}
return j == (int)b.size();
}
vi lcs(const vi& a, const vi& b) {
int n = a.size();
int m = b.size();
vvi dp(n+1, vi(m+1));
for (int i=1; i <= n; ++i) {
for (int j=1; j <= m; ++j) {
dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
if (a[i-1] == b[j-1]) dp[i][j] = max(dp[i][j], dp[i-1][j-1]+1);
}
}
vi c;
int ci = n;
int cj = m;
while (ci > 0 && cj > 0) {
if (a[ci-1] == b[cj-1] && dp[ci][cj] == dp[ci-1][cj-1]+1) {
c.push_back(a[ci-1]);
ci--;
cj--;
}
else {
if (dp[ci][cj] == dp[ci-1][cj]) {
ci--;
}
else {
cj--;
}
}
}
reverse(c.begin(), c.end());
return c;
}
vector<int> get_candidate_linear(vector<int> a, vector<int> b) {
int n = a.size();
int m = b.size();
vi occ_a(max(n, m)+1, 0);
vi occ_b(max(n, m)+1, 0);
for (int i=0; i < n; ++i) {
occ_a[a[i]]++;
}
for (int i=0; i < m; ++i) {
occ_b[b[i]]++;
}
vi c;
queue<int> qa;
queue<int> qb;
for (int i=0; i < n; ++i) {
if (occ_a[a[i]] <= occ_b[a[i]]) {
qa.push(i);
}
}
for (int i=0; i < m; ++i) {
if (occ_a[b[i]] > occ_b[b[i]]) {
qb.push(i);
}
}
int i_a_curr = 0;
int i_b_curr = 0;
int i_a_next = 0;
int i_b_next = 0;
vi occ_a_curr = vi(occ_a);
vi occ_a_next = vi(occ_a);
vi occ_b_curr = vi(occ_b);
vi occ_b_next = vi(occ_b);
while(!qa.empty() && !qb.empty()) {
while(i_a_next < qa.front()) {
occ_a_next[a[i_a_next]]--;
i_a_next++;
}
while(i_b_next < qb.front()) {
occ_b_next[b[i_b_next]]--;
i_b_next++;
}
int x = a[i_a_next];
int y = b[i_b_next];
int occ_x = occ_a_next[x];
int occ_y = occ_b_next[y];
bool a_good = (occ_a_next[y] >= occ_y && occ_b_curr[x] > occ_b_next[x]);
bool b_good = (occ_b_next[x] >= occ_x && occ_a_curr[y] > occ_a_next[y]);
if (a_good && b_good) return vi();
if (!a_good && !b_good) return vi();
if(a_good) {
c.push_back(x);
qa.pop();
while(i_a_curr <= i_a_next) {
occ_a_curr[a[i_a_curr]]--;
i_a_curr++;
}
while(b[i_b_curr] != x) {
occ_b_curr[b[i_b_curr]]--;
i_b_curr++;
}
occ_b_curr[b[i_b_curr]]--;
i_b_curr++;
}
else {
c.push_back(y);
qb.pop();
while(i_b_curr <= i_b_next) {
occ_b_curr[b[i_b_curr]]--;
i_b_curr++;
}
while(a[i_a_curr] != y) {
occ_a_curr[a[i_a_curr]]--;
i_a_curr++;
}
occ_a_curr[a[i_a_curr]]--;
i_a_curr++;
}
}
while(!qa.empty()) {
c.push_back(a[qa.front()]);
qa.pop();
}
while(!qb.empty()) {
c.push_back(b[qb.front()]);
qb.pop();
}
return ((is_subsequence(a, c) && is_subsequence(b, c)) ? c : vi());
}
vi reverse_get_candidate_linear(vi a, vi b) {
reverse(a.begin(), a.end());
reverse(b.begin(), b.end());
vi c = get_candidate_linear(a, b);
reverse(c.begin(), c.end());
return c;
}
bool verify_xxyy_subseq(vector<int> a, vector<int> b, vector<int> c) {
if (c.empty()) return false;
int n = a.size();
int m = b.size();
int l = c.size();
set<int> chars;
for (int x : c) {
chars.insert(x);
}
for (int x : chars) {
for (int y : chars) {
if (x == y) continue;
int yac = 0;
int ybc = 0;
int ycc = 0;
for (int i=0; i < n; ++i) if (a[i] == y) yac++;
for (int i=0; i < m; ++i) if (b[i] == y) ybc++;
for (int i=0; i < l; ++i) if (c[i] == y) ycc++;
int i = 0;
int j = 0;
int k = 0;
while (i < n && j < m && k < l) {
while (i < n && a[i] != x) {
if (a[i] == y) yac--;
i++;
}
while (j < m && b[j] != x) {
if (b[j] == y) ybc--;
j++;
}
while (k < l && c[k] != x) {
if (c[k] == y) ycc--;
k++;
}
if (i < n && j < m && k < l) {
if (yac > ycc && ybc > ycc) {
return false;
}
i++;
j++;
k++;
}
}
}
}
return true;
}
bool verify_quadratic(vector<int> a, vector<int> b, vector<int> c) {
int n = a.size();
int m = b.size();
int l = c.size();
vvi nxt(max(n, m)+1, vi(l+2, l)); //nxt[x][i] = first k such that c[k] = x and k >= i, l if such k does not exist
for (int i=0; i < l; ++i) {
for (int j=0; j <= i; ++j) {
nxt[c[i]][j] = min(nxt[c[i]][j], i);
}
}
vvi dp(n+1, vi(m+1, -1)); //dp[i][j] = maximum k so that there is a common subseq of a[0..i), b[0..j) which is not a subseq of c[0..k), -1 if no subseq
for (int i=1; i <= n; ++i) {
for (int j=1; j <= m; ++j) {
if (a[i-1] == b[j-1]) {
dp[i][j] = nxt[a[i-1]][dp[i-1][j-1]+1];
}
dp[i][j] = max(dp[i][j], max(dp[i-1][j], dp[i][j-1]));
}
}
if (dp[n][m] == l) return false;
return true;
}
bool verify_single_weak(vector<int> a, vector<int> b, vector<int> c) {
map<int, int> freq;
int l = c.size();
for (int i=0; i < l; ++i) {
int x = c[i];
freq[x]++;
while(i+1 < l && c[i+1] == x) ++i;
}
if (freq.size() > 3) return true;
for (auto p : freq) {
if (p.second == 1) {
return verify_quadratic(a, b, c);
}
}
return true;
}
bool verify_greedy(vector<int> a, vector<int> b, vector<int> c) {
int n = a.size();
int m = b.size();
int l = c.size();
vi occ_a(max(n, m)+1, 0);
vi occ_b(max(n, m)+1, 0);
for (int i=0; i < n; ++i) {
occ_a[a[i]]++;
}
for (int i=0; i < m; ++i) {
occ_b[b[i]]++;
}
vi cv(l, n);
int bi = 0;
int ci = 0;
for (int i=0; i < n; ++i) {
if (occ_a[a[i]] >= occ_b[a[i]]) {
while(bi < m && b[bi] != a[i]) bi++;
if (bi == m) break;
bi++;
while (ci < l && c[ci] != a[i]) ci++;
cv[ci] = i;
ci++;
}
}
int aj = n-1;
int mina = n;
int cj = l-1;
for (int j=m-1; j > -1; --j) {
if (occ_b[b[j]] >= occ_a[b[j]]) {
while (cj > -1 && c[cj] != b[j]) {
mina = min(mina, cv[cj]);
cj--;
}
if (cj < 0) break;
cj--;
while (aj > -1 && a[aj] != b[j]) {
aj--;
}
if (aj < 0) break;
if (aj > mina) return false;
aj--;
}
else {
while (cj > -1 && c[cj] != b[j]) cj--;
if (cj < 0) break;
cj--;
}
}
return true;
}
bool verify_greedy_one_strong_alternation(vector<int> a, vector<int> b, vector<int> c) {
return verify_greedy(a, b, c) && verify_greedy(b, a, c);
}
//complexity not optimized
pair<bool, vi> solve(vi a, vi b) {
if (a.empty() || b.empty()) {
return pair<bool, vi>(true, {});
}
if (a.back() == b.back()) {
int x = a.back();
a.pop_back();
b.pop_back();
auto p = solve(a, b);
if (p.first) {
p.second.push_back(x);
}
return p;
}
if (a[0] == b[0]) {
int x = a[0];
a.erase(a.begin());
b.erase(b.begin());
auto p = solve(a, b);
if (p.first) {
p.second.insert(p.second.begin(), x);
}
return p;
}
if (!compressed(a, b)) {
clean(a, b);
if (a.empty() || b.empty()) {
return pair<bool, vi>(true, {});
}
map<int, int> mp = coordinate_compress(a, b);
auto p = solve(a, b);
for (int& x : p.second) x = mp[x];
return p;
}
//End recursive solving part
vector<function<vi(vi, vi)>> candidates_f = {get_candidate_linear, reverse_get_candidate_linear, lcs};
vi c = candidates_f[0](a, b);
//cerr << "Candidate test" << endl;
for (auto f : candidates_f) {
if (c != f(a, b)) return pair<bool, vi>(false, {});
}
vector<function<bool(vi, vi, vi)>> verify_f = {verify_xxyy_subseq, verify_single_weak, verify_greedy_one_strong_alternation};
//cerr << "Verify test" << endl;
for (auto f : verify_f) {
if (!f(a, b, c)) return pair<bool, vi>(false, {});
}
return pair<bool, vi>(true, c);
}
vector<int> ucs(vector<int> a, vector<int> b) {
auto p = solve(a, b);
if (p.first) {
return p.second;
}
return {-1};
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
1 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
1 ms |
348 KB |
Output is correct |
3 |
Correct |
2 ms |
4696 KB |
Output is correct |
4 |
Correct |
3 ms |
4444 KB |
Output is correct |
5 |
Runtime error |
968 ms |
2097152 KB |
Execution killed with signal 9 |
6 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
1 ms |
348 KB |
Output is correct |
3 |
Correct |
2 ms |
4696 KB |
Output is correct |
4 |
Correct |
3 ms |
4444 KB |
Output is correct |
5 |
Runtime error |
968 ms |
2097152 KB |
Execution killed with signal 9 |
6 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
1102 ms |
2097152 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
1102 ms |
2097152 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
1 ms |
348 KB |
Output is correct |
3 |
Correct |
1 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
344 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
2 ms |
368 KB |
Output is correct |
9 |
Correct |
2 ms |
356 KB |
Output is correct |
10 |
Correct |
50 ms |
36448 KB |
Output is correct |
11 |
Correct |
24 ms |
18236 KB |
Output is correct |
12 |
Correct |
42 ms |
35676 KB |
Output is correct |
13 |
Correct |
17 ms |
24668 KB |
Output is correct |
14 |
Correct |
10 ms |
2908 KB |
Output is correct |
15 |
Correct |
70 ms |
30952 KB |
Output is correct |
16 |
Correct |
566 ms |
32408 KB |
Output is correct |
17 |
Execution timed out |
1049 ms |
22876 KB |
Time limit exceeded |
18 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
1 ms |
348 KB |
Output is correct |
4 |
Correct |
1 ms |
348 KB |
Output is correct |
5 |
Correct |
1 ms |
348 KB |
Output is correct |
6 |
Correct |
2 ms |
4696 KB |
Output is correct |
7 |
Correct |
3 ms |
4444 KB |
Output is correct |
8 |
Runtime error |
968 ms |
2097152 KB |
Execution killed with signal 9 |
9 |
Halted |
0 ms |
0 KB |
- |