Submission #1099845

# Submission time Handle Problem Language Result Execution time Memory
1099845 2024-10-12T05:35:37 Z model_code Hieroglyphs (IOI24_hieroglyphs) C++17
0 / 100
1000 ms 2097152 KB
// time_limit_and_runtime_error/felix-multiple-heuristics.cpp

#include<bits/stdc++.h>
#include "hieroglyphs.h"

using namespace std;

using vi = vector<int>;
using vvi = vector<vi>;

//erases non-common elements
void clean(vi& a, vi& b) {
    vi ap;
    vi bp;
    set<int> as;
    set<int> bs;
    for (int x : a) as.insert(x);
    for (int x : b) bs.insert(x);
    for (int x : a) if (bs.count(x)) ap.push_back(x);
    for (int x : b) if (as.count(x)) bp.push_back(x);
    swap(a, ap);
    swap(b, bp);
}

map<int, int> coordinate_compress(vi& a, vi& b) {
    int cc = 0;
    map<int, int> mp;
    map<int, int> rmp;
    for (int& x : a) {
        if (!mp.count(x)) {
            mp[x] = cc++;
            rmp[mp[x]] = x;
        }
        x = mp[x];
    }
    for (int& x : b) {
        if (!mp.count(x)) {
            mp[x] = cc++;
            rmp[mp[x]] = x;
        }
        x = mp[x];
    }
    return rmp;
}

bool compressed(const vi& a, const vi& b) {
    set<int> as;
    set<int> bs;
    int n = a.size();
    int m = b.size();
    for (int x : a) as.insert(x);
    for (int x : b) bs.insert(x);
    for (int x : a) {
        if (x >= n) return false;
        if (!bs.count(x)) return false;
    }
    for (int x : b) {
        if (x >= m) return false;
        if (!as.count(x)) return false;
    }
    return true;
}

bool is_subsequence(const vi& a, const vi& b) {
    int j = 0;
    for (int x : a) {
        if (j < (int)b.size() && b[j] == x) {
            j++;
        }
    }
    return j == (int)b.size();
}

vi lcs(const vi& a, const vi& b) {
    int n = a.size();
    int m = b.size();

    vvi dp(n+1, vi(m+1));
    for (int i=1; i <= n; ++i) {
        for (int j=1; j <= m; ++j) {
            dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            if (a[i-1] == b[j-1]) dp[i][j] = max(dp[i][j], dp[i-1][j-1]+1);
        }
    }

    vi c;
    int ci = n;
    int cj = m;
    while (ci > 0 && cj > 0) {
        if (a[ci-1] == b[cj-1] && dp[ci][cj] == dp[ci-1][cj-1]+1) {
            c.push_back(a[ci-1]);
            ci--;
            cj--;
        }
        else {
            if (dp[ci][cj] == dp[ci-1][cj]) {
                ci--;
            }
            else {
                cj--;
            }
        }
    }

    reverse(c.begin(), c.end());
    return c;
}

vector<int> get_candidate_linear(vector<int> a, vector<int> b) {
    int n = a.size();
    int m = b.size();

    vi occ_a(max(n, m)+1, 0);
    vi occ_b(max(n, m)+1, 0);
    for (int i=0; i < n; ++i) {
        occ_a[a[i]]++;
    }
    for (int i=0; i < m; ++i) {
        occ_b[b[i]]++;
    }

    vi c;
    queue<int> qa;
    queue<int> qb;

    for (int i=0; i < n; ++i) {
        if (occ_a[a[i]] <= occ_b[a[i]]) {
            qa.push(i);
        }
    }
    for (int i=0; i < m; ++i) {
        if (occ_a[b[i]] > occ_b[b[i]]) {
            qb.push(i);
        }
    }

    int i_a_curr = 0;
    int i_b_curr = 0;
    int i_a_next = 0;
    int i_b_next = 0;
    vi occ_a_curr = vi(occ_a);
    vi occ_a_next = vi(occ_a);
    vi occ_b_curr = vi(occ_b);
    vi occ_b_next = vi(occ_b);

    while(!qa.empty() && !qb.empty()) {
        while(i_a_next < qa.front()) {
            occ_a_next[a[i_a_next]]--;
            i_a_next++;
        }
        while(i_b_next < qb.front()) {
            occ_b_next[b[i_b_next]]--;
            i_b_next++;
        }

        int x = a[i_a_next];
        int y = b[i_b_next];

        int occ_x = occ_a_next[x];
        int occ_y = occ_b_next[y];

        bool a_good = (occ_a_next[y] >= occ_y && occ_b_curr[x] > occ_b_next[x]);
        bool b_good = (occ_b_next[x] >= occ_x && occ_a_curr[y] > occ_a_next[y]);

        if (a_good && b_good) return vi();
        if (!a_good && !b_good) return vi();

        if(a_good) {
            c.push_back(x);
            qa.pop();
            while(i_a_curr <= i_a_next) {
                occ_a_curr[a[i_a_curr]]--;
                i_a_curr++;
            }
            while(b[i_b_curr] != x) {
                occ_b_curr[b[i_b_curr]]--;
                i_b_curr++;
            }
            occ_b_curr[b[i_b_curr]]--;
            i_b_curr++;
        }
        else {
            c.push_back(y);
            qb.pop();
            while(i_b_curr <= i_b_next) {
                occ_b_curr[b[i_b_curr]]--;
                i_b_curr++;
            }
            while(a[i_a_curr] != y) {
                occ_a_curr[a[i_a_curr]]--;
                i_a_curr++;
            }
            occ_a_curr[a[i_a_curr]]--;
            i_a_curr++;
        }
    }

    while(!qa.empty()) {
        c.push_back(a[qa.front()]);
        qa.pop();
    }
    while(!qb.empty()) {
        c.push_back(b[qb.front()]);
        qb.pop();
    }

    return ((is_subsequence(a, c) && is_subsequence(b, c)) ? c : vi());
}

vi reverse_get_candidate_linear(vi a, vi b) {
    reverse(a.begin(), a.end());
    reverse(b.begin(), b.end());
    vi c = get_candidate_linear(a, b);
    reverse(c.begin(), c.end());
    return c;
}

bool verify_xxyy_subseq(vector<int> a, vector<int> b, vector<int> c) {
    if (c.empty()) return false;
    int n = a.size();
    int m = b.size(); 
    int l = c.size();
    set<int> chars;
    for (int x : c) {
        chars.insert(x);
    }
    for (int x : chars) {
        for (int y : chars) {
            if (x == y) continue;
            int yac = 0;
            int ybc = 0;
            int ycc = 0;
            for (int i=0; i < n; ++i) if (a[i] == y) yac++; 
            for (int i=0; i < m; ++i) if (b[i] == y) ybc++; 
            for (int i=0; i < l; ++i) if (c[i] == y) ycc++; 
            int i = 0;
            int j = 0;
            int k = 0; 
            while (i < n && j < m && k < l) {
                while (i < n && a[i] != x) {
                    if (a[i] == y) yac--;
                    i++;
                }
                while (j < m && b[j] != x) {
                    if (b[j] == y) ybc--;
                    j++;
                }
                while (k < l && c[k] != x) {
                    if (c[k] == y) ycc--;
                    k++;
                }
                if (i < n && j < m && k < l) {
                    if (yac > ycc && ybc > ycc) {
                        return false;
                    }
                    i++;
                    j++;
                    k++;
                }
            }
        }
    }
    return true;
}

bool verify_quadratic(vector<int> a, vector<int> b, vector<int> c) {
    int n = a.size();
    int m = b.size();
    int l = c.size();

    vvi nxt(max(n, m)+1, vi(l+2, l)); //nxt[x][i] = first k such that c[k] = x and k >= i, l if such k does not exist

    for (int i=0; i < l; ++i) {
        for (int j=0; j <= i; ++j) {
            nxt[c[i]][j] = min(nxt[c[i]][j], i);
        }
    }

    vvi dp(n+1, vi(m+1, -1)); //dp[i][j] = maximum k so that there is a common subseq of a[0..i), b[0..j) which is not a subseq of c[0..k), -1 if no subseq

    for (int i=1; i <= n; ++i) {
        for (int j=1; j <= m; ++j) {
            if (a[i-1] == b[j-1]) {
                dp[i][j] = nxt[a[i-1]][dp[i-1][j-1]+1];
            }
            dp[i][j] = max(dp[i][j], max(dp[i-1][j], dp[i][j-1]));
        }
    }

    if (dp[n][m] == l) return false;
    return true;
}

bool verify_single_weak(vector<int> a, vector<int> b, vector<int> c) {
    map<int, int> freq;
    int l = c.size();
    for (int i=0; i < l; ++i) {
        int x = c[i];
        freq[x]++;
        while(i+1 < l && c[i+1] == x) ++i;
    }
    if (freq.size() > 3) return true;
    for (auto p : freq) {
        if (p.second == 1) {
            return verify_quadratic(a, b, c);
        }
    }
    return true;
}

bool verify_greedy(vector<int> a, vector<int> b, vector<int> c) {
    int n = a.size();
    int m = b.size();
    int l = c.size();

    vi occ_a(max(n, m)+1, 0);
    vi occ_b(max(n, m)+1, 0);
    for (int i=0; i < n; ++i) {
        occ_a[a[i]]++;
    }
    for (int i=0; i < m; ++i) {
        occ_b[b[i]]++;
    }

    vi cv(l, n);
    int bi = 0;
    int ci = 0;

    for (int i=0; i < n; ++i) {
        if (occ_a[a[i]] >= occ_b[a[i]]) {
            while(bi < m && b[bi] != a[i]) bi++;
            if (bi == m) break;
            bi++;
            while (ci < l && c[ci] != a[i]) ci++;
            cv[ci] = i;
            ci++;
        }
    }

    int aj = n-1;
    int mina = n;
    int cj = l-1;
    for (int j=m-1; j > -1; --j) {
        if (occ_b[b[j]] >= occ_a[b[j]]) {
            while (cj > -1 && c[cj] != b[j]) {
                mina = min(mina, cv[cj]);
                cj--;
            }
            if (cj < 0) break;
            cj--;

            while (aj > -1 && a[aj] != b[j]) {
                aj--;
            }
            if (aj < 0) break;
            if (aj > mina) return false;
            aj--;
        }
        else {
            while (cj > -1 && c[cj] != b[j]) cj--;
            if (cj < 0) break;
            cj--;
        }
    }
    return true;
}

bool verify_greedy_one_strong_alternation(vector<int> a, vector<int> b, vector<int> c) {
    return verify_greedy(a, b, c) && verify_greedy(b, a, c);
}

//complexity not optimized
pair<bool, vi> solve(vi a, vi b) {
    if (a.empty() || b.empty()) {
        return pair<bool, vi>(true, {});
    }
    if (a.back() == b.back()) {
        int x = a.back();
        a.pop_back();
        b.pop_back();
        auto p = solve(a, b);
        if (p.first) {
            p.second.push_back(x);
        }
        return p;
    }
    if (a[0] == b[0]) {
        int x = a[0];
        a.erase(a.begin());
        b.erase(b.begin());
        auto p = solve(a, b);
        if (p.first) {
            p.second.insert(p.second.begin(), x);
        }
        return p;
    }
    if (!compressed(a, b)) {
        clean(a, b);
        if (a.empty() || b.empty()) {
            return pair<bool, vi>(true, {});
        }
        map<int, int> mp = coordinate_compress(a, b);
        auto p = solve(a, b);
        for (int& x : p.second) x = mp[x];
        return p;
    }

    //End recursive solving part

    vector<function<vi(vi, vi)>> candidates_f = {get_candidate_linear, reverse_get_candidate_linear, lcs};

    vi c = candidates_f[0](a, b);
    
    //cerr << "Candidate test" << endl;

    for (auto f : candidates_f) {
        if (c != f(a, b)) return pair<bool, vi>(false, {});
    }

    vector<function<bool(vi, vi, vi)>> verify_f = {verify_xxyy_subseq, verify_single_weak, verify_greedy_one_strong_alternation};

    //cerr << "Verify test" << endl;

    for (auto f : verify_f) {
        if (!f(a, b, c)) return pair<bool, vi>(false, {});
    }

    return pair<bool, vi>(true, c);
}

vector<int> ucs(vector<int> a, vector<int> b) {
    auto p = solve(a, b);
    if (p.first) {
        return p.second;
    }
    return {-1};
}

# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 2 ms 4696 KB Output is correct
4 Correct 3 ms 4444 KB Output is correct
5 Runtime error 968 ms 2097152 KB Execution killed with signal 9
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 2 ms 4696 KB Output is correct
4 Correct 3 ms 4444 KB Output is correct
5 Runtime error 968 ms 2097152 KB Execution killed with signal 9
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Execution timed out 1102 ms 2097152 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Execution timed out 1102 ms 2097152 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 2 ms 368 KB Output is correct
9 Correct 2 ms 356 KB Output is correct
10 Correct 50 ms 36448 KB Output is correct
11 Correct 24 ms 18236 KB Output is correct
12 Correct 42 ms 35676 KB Output is correct
13 Correct 17 ms 24668 KB Output is correct
14 Correct 10 ms 2908 KB Output is correct
15 Correct 70 ms 30952 KB Output is correct
16 Correct 566 ms 32408 KB Output is correct
17 Execution timed out 1049 ms 22876 KB Time limit exceeded
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 2 ms 4696 KB Output is correct
7 Correct 3 ms 4444 KB Output is correct
8 Runtime error 968 ms 2097152 KB Execution killed with signal 9
9 Halted 0 ms 0 KB -