Submission #1094292

# Submission time Handle Problem Language Result Execution time Memory
1094292 2024-09-29T09:20:53 Z cpptowin Hedgehog Daniyar and Algorithms (IZhO19_sortbooks) C++17
64 / 100
1230 ms 262144 KB
#include <bits/stdc++.h>
#define fo(i, d, c) for (int i = d; i <= c; i++)
#define fod(i, c, d) for (int i = c; i >= d; i--)
#define maxn 1000010
#define N 1010
#define fi first
#define se second
#define pb emplace_back
#define en cout << "\n";
#define bitcount(x) __builtin_popcountll(x)
#define pii pair<int, int>
#define vii vector<pii>
#define lb(x) x & -x
#define bit(i, j) ((i >> j) & 1)
#define offbit(i, j) (i ^ (1LL << j))
#define onbit(i, j) (i | (1LL << j))
#define vi vector<int>
#define all(x) x.begin(), x.end()
#define ss(x) (int)x.size()
template <typename T1, typename T2>
bool minimize(T1 &a, T2 b)
{
    if (a > b)
    {
        a = b;
        return true;
    }
    return false;
}
template <typename T1, typename T2>
bool maximize(T1 &a, T2 b)
{
    if (a < b)
    {
        a = b;
        return true;
    }
    return false;
}
using namespace std;
static struct FastInput
{
    static constexpr int BUF_SIZE = 1 << 20;
    char buf[BUF_SIZE];
    size_t chars_read = 0;
    size_t buf_pos = 0;
    FILE *in = stdin;
    char cur = 0;

    inline char get_char()
    {
        if (buf_pos >= chars_read)
        {
            chars_read = fread(buf, 1, BUF_SIZE, in);
            buf_pos = 0;
            buf[0] = (chars_read == 0 ? -1 : buf[0]);
        }
        return cur = buf[buf_pos++];
    }

    inline void tie(int) {}

    inline explicit operator bool()
    {
        return cur != -1;
    }

    inline static bool is_blank(char c)
    {
        return c <= ' ';
    }

    inline bool skip_blanks()
    {
        while (is_blank(cur) && cur != -1)
        {
            get_char();
        }
        return cur != -1;
    }

    inline FastInput &operator>>(char &c)
    {
        skip_blanks();
        c = cur;
        return *this;
    }

    inline FastInput &operator>>(string &s)
    {
        if (skip_blanks())
        {
            s.clear();
            do
            {
                s += cur;
            } while (!is_blank(get_char()));
        }
        return *this;
    }

    template <typename T>
    inline FastInput &read_integer(T &n)
    {
        // unsafe, doesn't check that characters are actually digits
        n = 0;
        if (skip_blanks())
        {
            int sign = +1;
            if (cur == '-')
            {
                sign = -1;
                get_char();
            }
            do
            {
                n += n + (n << 3) + cur - '0';
            } while (!is_blank(get_char()));
            n *= sign;
        }
        return *this;
    }

    template <typename T>
    inline typename enable_if<is_integral<T>::value, FastInput &>::type operator>>(T &n)
    {
        return read_integer(n);
    }

#if !defined(_WIN32) || defined(_WIN64)
    inline FastInput &operator>>(__int128 &n)
    {
        return read_integer(n);
    }
#endif

    template <typename T>
    inline typename enable_if<is_floating_point<T>::value, FastInput &>::type operator>>(T &n)
    {
        // not sure if really fast, for compatibility only
        n = 0;
        if (skip_blanks())
        {
            string s;
            (*this) >> s;
            sscanf(s.c_str(), "%lf", &n);
        }
        return *this;
    }
} fast_input;

#define cin fast_input

static struct FastOutput
{
    static constexpr int BUF_SIZE = 1 << 20;
    char buf[BUF_SIZE];
    size_t buf_pos = 0;
    static constexpr int TMP_SIZE = 1 << 20;
    char tmp[TMP_SIZE];
    FILE *out = stdout;

    inline void put_char(char c)
    {
        buf[buf_pos++] = c;
        if (buf_pos == BUF_SIZE)
        {
            fwrite(buf, 1, buf_pos, out);
            buf_pos = 0;
        }
    }

    ~FastOutput()
    {
        fwrite(buf, 1, buf_pos, out);
    }

    inline FastOutput &operator<<(char c)
    {
        put_char(c);
        return *this;
    }

    inline FastOutput &operator<<(const char *s)
    {
        while (*s)
        {
            put_char(*s++);
        }
        return *this;
    }

    inline FastOutput &operator<<(const string &s)
    {
        for (int i = 0; i < (int)s.size(); i++)
        {
            put_char(s[i]);
        }
        return *this;
    }

    template <typename T>
    inline char *integer_to_string(T n)
    {
        // beware of TMP_SIZE
        char *p = tmp + TMP_SIZE - 1;
        if (n == 0)
        {
            *--p = '0';
        }
        else
        {
            bool is_negative = false;
            if (n < 0)
            {
                is_negative = true;
                n = -n;
            }
            while (n > 0)
            {
                *--p = (char)('0' + n % 10);
                n /= 10;
            }
            if (is_negative)
            {
                *--p = '-';
            }
        }
        return p;
    }

    template <typename T>
    inline typename enable_if<is_integral<T>::value, char *>::type stringify(T n)
    {
        return integer_to_string(n);
    }

#if !defined(_WIN32) || defined(_WIN64)
    inline char *stringify(__int128 n)
    {
        return integer_to_string(n);
    }
#endif

    template <typename T>
    inline typename enable_if<is_floating_point<T>::value, char *>::type stringify(T n)
    {
        sprintf(tmp, "%.17f", n);
        return tmp;
    }

    template <typename T>
    inline FastOutput &operator<<(const T &n)
    {
        auto p = stringify(n);
        for (; *p != 0; p++)
        {
            put_char(*p);
        }
        return *this;
    }
} fast_output;

#define cout fast_output
const int nsqrt = 450;
const int mod = 1e9 + 7;
void add(int &x, int k)
{
    x += k;
    x %= mod;
    if (x < 0)
        x += mod;
}
void del(int &x, int k)
{
    x -= k;
    x %= mod;
    if (x < 0)
        x += mod;
}
const int MAXN = 32000005; // n*(log(max(ai))+4)
namespace WaveletTree
{
    // nenso -> build -> query
    int n;
    int arr[maxn], w[MAXN], nxt = 1, in = 0;
    int lc[MAXN], rc[MAXN], l[MAXN], r[MAXN];
    int b[MAXN];
    const int from = 0, to = maxn;
    vi nen;
    void nenso()
    {
        fo(i, 1, n) nen.pb(arr[i]);
        sort(all(nen));
        nen.erase(unique(all(nen)), nen.end());
        fo(i, 1, n) arr[i] = lower_bound(all(nen), arr[i]) - nen.begin();
    }
    void build(int psz = -1, bool f = 1, int pnd = -1, int nd = 1, int s = from, int e = to)
    {
        l[nd] = ++in, r[nd] = in - 1;
        int midp = psz >> 1, mid = (s + e) >> 1, i1 = (nd == 1) ? n : r[pnd];
        for (int i = (nd == 1) ? 1 : l[pnd]; i <= i1; i++)
            if (nd == 1 || (f && w[i] <= midp) || (!f && w[i] > midp))
                w[in] = (nd == 1) ? arr[i] : w[i], r[nd] = in,
                b[in] = b[in - 1] + (w[in] <= mid), in++;
        if (s == e)
            return;
        int sz = (nd == 1) ? n : r[nd] - l[nd] + 1;
        if (b[r[nd]] - b[l[nd] - 1])
            lc[nd] = ++nxt, build(s + e, 1, nd, lc[nd], s, mid);
        if (b[r[nd]] - b[l[nd] - 1] != sz)
            rc[nd] = ++nxt, build(s + e, 0, nd, rc[nd], mid + 1, e);
    }

    /*
    note:
    - w stores the array elements of each node
    - b stores the prefix sum of frequency of elements <= mid of each node
    - lc contains the node number of the left child of a node
    - rc contains the node number of the right child of a node
    - nxt is used to find the new node number to assign to a node
    - in is used to allot space in the w array for each node
    - [l[nd],r[nd]] is the range for elements of node nd in w and b
    - psz is the number of elements in the parent of a node
    - pnd is the parent of a node
    - f is 1 if the current node is a left child, 0 otherwise
    */

    // kth smallest element in range [l1,r1]
    int kth(int l1, int r1, int k, int nd = 1, int s = from, int e = to)
    {
        if (s == e)
            return s;
        int mid = (s + e) >> 1;
        int got = b[l[nd] + r1] - b[l[nd] + l1 - 1];
        if (got >= k)
            return kth(b[l[nd] + l1 - 1], b[l[nd] + r1] - 1, k, lc[nd], s, mid);
        return kth(l1 - b[l[nd] + l1 - 1], r1 - b[l[nd] + r1], k - got, rc[nd], mid + 1, e);
    }

    int KTH(int l, int r, int k)
    {
        return nen[kth(l, r, k)];
    }
    // count of k in range [l1,r1]
    int count(int l1, int r1, int k, int nd = 1, int s = from, int e = to)
    {
        if (s == e)
            return b[l[nd] + r1] - b[l[nd] + l1 - 1];
        int mid = (s + e) >> 1;
        if (mid >= k)
            return count(b[l[nd] + l1 - 1], b[l[nd] + r1] - 1, k, lc[nd], s, mid);
        return count(l1 - b[l[nd] + l1 - 1], r1 - b[l[nd] + r1], k, rc[nd], mid + 1, e);
    }

    int COUNT(int l, int r, int k)
    {
        k = lower_bound(all(nen), k) - nen.begin() + 1;
        return count(l, r, k);
    }
    // count of numbers <= to k in range [l1,r1]
    int lte(int l1, int r1, int k, int nd = 1, int s = from, int e = to)
    {
        if (l1 > r1 || k < s)
            return 0;
        if (e <= k)
            return r1 - l1 + 1;
        int mid = (s + e) >> 1;
        return lte(b[l[nd] + l1 - 1], b[l[nd] + r1] - 1, k, lc[nd], s, mid) + lte(l1 - b[l[nd] + l1 - 1], r1 - b[l[nd] + r1], k, rc[nd], mid + 1, e);
    }
    int LTE(int l, int r, int k)
    {
        k = upper_bound(all(nen), k) - nen.begin() - 1;
        return lte(l, r, k);
    }
}
struct BIT
{
    int t[maxn];
    BIT()
    {
        fo(i, 0, maxn - 1) t[i] = -1;
    }
    void up(int x, int val)
    {
        for (; x < maxn; x += lb(x))
            maximize(t[x], val);
    }
    void clear(int x)
    {
        for (; x < maxn; x += lb(x))
            t[x] = -1;
    }
    int get(int x)
    {
        int ans = -1;
        for (; x; x -= lb(x))
            maximize(ans, t[x]);
        return ans;
    }
} minn;
struct BIT1
{
    int t[maxn];
    BIT1()
    {
        fo(i, 1, maxn - 1) t[i] = -1;
    }
    void up(int x, int val)
    {
        for (; x; x -= lb(x))
            maximize(t[x], val);
    }
    void clear(int x)
    {
        for (; x; x -= lb(x))
            t[x] = -1;
    }
    int get(int x)
    {
        int ans = -1;
        for (; x < maxn; x += lb(x))
            maximize(ans, t[x]);
        return ans;
    }
} maxx;
int n, q, a[maxn];
int res[maxn];
int sum[maxn];
int maxl[maxn];
vi nen;
void calc(int l, int r, vector<array<int, 4>> qry)
{
    int mid = l + r >> 1;
    maxl[mid] = a[mid];
    fod(i, mid - 1, l)
    {
        maxl[i] = max(maxl[i + 1], a[i]);
        int lb = lower_bound(all(nen), a[i + 1]) - nen.begin() + 1;
        minn.up(lb, a[i + 1]);
        lb = lower_bound(all(nen), a[i]) - nen.begin() + 1;
        if (minn.get(lb - 1) != -1)
            sum[i] = minn.get(lb - 1) + a[i];
        maximize(sum[i], sum[i + 1]);
    }
    fo(i, mid + 2, r)
    {
        int lb = lower_bound(all(nen), a[i - 1]) - nen.begin() + 1;
        maxx.up(lb, a[i - 1]);
        lb = lower_bound(all(nen), a[i]) - nen.begin() + 1;
        if (maxx.get(lb + 1) != -1)
            sum[i] = maxx.get(lb + 1) + a[i];
        maximize(sum[i], sum[i - 1]);
    }
    fod(i, mid, l)
    {
        int lb = lower_bound(all(nen), a[i]) - nen.begin() + 1;
        minn.clear(lb);
    }
    fo(i, mid + 1, r)
    {
        int lb = lower_bound(all(nen), a[i]) - nen.begin() + 1;
        maxx.clear(lb);
    }
    vector<array<int, 4>> ll, rr;
    for (auto [l, r, val, id] : qry)
        if (l != r)
        {
            if (l <= mid and r >= mid)
            {
                if (max(sum[l], sum[r]) > val)
                    res[id] = 1;
                else
                {
                    int L = max(val - maxl[l], 0);
                    if (WaveletTree::LTE(mid, r - 1, maxl[l] - 1) -
                            WaveletTree::LTE(mid, r - 1, L) >
                        0)
                        res[id] = 1;
                }
            }
            else if (r < mid)
                ll.push_back({l, r, val, id});
            else if (l > mid)
                rr.push_back({l, r, val, id});
        }
    fo(i,l,r) sum[i] = maxl[i] = 0;
    if (l != r)
    {
        calc(l, mid, ll);
        calc(mid + 1, r, rr);
    }
}
main()
{
#define name "TASK"
    if (fopen(name ".inp", "r"))
    {
        freopen(name ".inp", "r", stdin);
        freopen(name ".out", "w", stdout);
    }
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cin >> n >> q;
    WaveletTree::n = n;
    fo(i, 1, n)
    {
        cin >> a[i];
        nen.pb(a[i]);
        WaveletTree::arr[i] = a[i];
    }
    sort(all(nen));
    nen.erase(unique(all(nen)), nen.end());
    WaveletTree::nenso();
    WaveletTree::build();
    vector<array<int, 4>> qry(q);
    fo(i, 0, q - 1)
    {
        cin >> qry[i][0] >> qry[i][1] >> qry[i][2];
        qry[i][3] = i + 1;
    }
    calc(1, n, qry);
    fo(i, 1, q) cout << (res[i] ^ 1) << "\n";
}

Compilation message

sortbooks.cpp: In function 'void calc(int, int, std::vector<std::array<int, 4> >)':
sortbooks.cpp:434:17: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
  434 |     int mid = l + r >> 1;
      |               ~~^~~
sortbooks.cpp: At global scope:
sortbooks.cpp:494:1: warning: ISO C++ forbids declaration of 'main' with no type [-Wreturn-type]
  494 | main()
      | ^~~~
sortbooks.cpp: In function 'int main()':
sortbooks.cpp:503:13: warning: passing NULL to non-pointer argument 1 of 'void FastInput::tie(int)' [-Wconversion-null]
  503 |     cin.tie(NULL);
      |             ^~~~
sortbooks.cpp:61:21: note:   declared here
   61 |     inline void tie(int) {}
      |                     ^~~
sortbooks.cpp:499:16: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
  499 |         freopen(name ".inp", "r", stdin);
      |         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~
sortbooks.cpp:500:16: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
  500 |         freopen(name ".out", "w", stdout);
      |         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 3 ms 8284 KB Output is correct
2 Correct 3 ms 8284 KB Output is correct
3 Correct 3 ms 8284 KB Output is correct
4 Correct 3 ms 8280 KB Output is correct
5 Correct 4 ms 8284 KB Output is correct
6 Correct 4 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8324 KB Output is correct
9 Correct 3 ms 8284 KB Output is correct
10 Correct 3 ms 8284 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 8284 KB Output is correct
2 Correct 3 ms 8284 KB Output is correct
3 Correct 3 ms 8284 KB Output is correct
4 Correct 3 ms 8280 KB Output is correct
5 Correct 4 ms 8284 KB Output is correct
6 Correct 4 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8324 KB Output is correct
9 Correct 3 ms 8284 KB Output is correct
10 Correct 3 ms 8284 KB Output is correct
11 Correct 7 ms 9052 KB Output is correct
12 Correct 19 ms 9884 KB Output is correct
13 Correct 17 ms 9816 KB Output is correct
14 Correct 18 ms 10072 KB Output is correct
15 Correct 18 ms 10076 KB Output is correct
16 Correct 14 ms 9816 KB Output is correct
17 Correct 12 ms 9820 KB Output is correct
18 Correct 8 ms 9564 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 680 ms 262144 KB Execution killed with signal 9
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 337 ms 37196 KB Output is correct
2 Correct 333 ms 33808 KB Output is correct
3 Correct 151 ms 34640 KB Output is correct
4 Correct 146 ms 35668 KB Output is correct
5 Correct 143 ms 36948 KB Output is correct
6 Correct 134 ms 33620 KB Output is correct
7 Correct 133 ms 33620 KB Output is correct
8 Correct 114 ms 34648 KB Output is correct
9 Correct 31 ms 15956 KB Output is correct
10 Correct 111 ms 34644 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 8284 KB Output is correct
2 Correct 3 ms 8284 KB Output is correct
3 Correct 3 ms 8284 KB Output is correct
4 Correct 3 ms 8280 KB Output is correct
5 Correct 4 ms 8284 KB Output is correct
6 Correct 4 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8324 KB Output is correct
9 Correct 3 ms 8284 KB Output is correct
10 Correct 3 ms 8284 KB Output is correct
11 Correct 7 ms 9052 KB Output is correct
12 Correct 19 ms 9884 KB Output is correct
13 Correct 17 ms 9816 KB Output is correct
14 Correct 18 ms 10072 KB Output is correct
15 Correct 18 ms 10076 KB Output is correct
16 Correct 14 ms 9816 KB Output is correct
17 Correct 12 ms 9820 KB Output is correct
18 Correct 8 ms 9564 KB Output is correct
19 Correct 1230 ms 77172 KB Output is correct
20 Correct 1218 ms 77240 KB Output is correct
21 Correct 1195 ms 69736 KB Output is correct
22 Correct 1198 ms 69696 KB Output is correct
23 Correct 1220 ms 69828 KB Output is correct
24 Correct 586 ms 68852 KB Output is correct
25 Correct 583 ms 68948 KB Output is correct
26 Correct 588 ms 68960 KB Output is correct
27 Correct 577 ms 69196 KB Output is correct
28 Correct 590 ms 69208 KB Output is correct
29 Correct 602 ms 76680 KB Output is correct
30 Correct 618 ms 76480 KB Output is correct
31 Correct 593 ms 75088 KB Output is correct
32 Correct 607 ms 75112 KB Output is correct
33 Correct 595 ms 75076 KB Output is correct
34 Correct 548 ms 69540 KB Output is correct
35 Correct 566 ms 69472 KB Output is correct
36 Correct 569 ms 69440 KB Output is correct
37 Correct 554 ms 69456 KB Output is correct
38 Correct 553 ms 69708 KB Output is correct
39 Correct 734 ms 70136 KB Output is correct
40 Correct 428 ms 55184 KB Output is correct
41 Correct 236 ms 61520 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 8284 KB Output is correct
2 Correct 3 ms 8284 KB Output is correct
3 Correct 3 ms 8284 KB Output is correct
4 Correct 3 ms 8280 KB Output is correct
5 Correct 4 ms 8284 KB Output is correct
6 Correct 4 ms 8540 KB Output is correct
7 Correct 4 ms 8540 KB Output is correct
8 Correct 4 ms 8324 KB Output is correct
9 Correct 3 ms 8284 KB Output is correct
10 Correct 3 ms 8284 KB Output is correct
11 Correct 7 ms 9052 KB Output is correct
12 Correct 19 ms 9884 KB Output is correct
13 Correct 17 ms 9816 KB Output is correct
14 Correct 18 ms 10072 KB Output is correct
15 Correct 18 ms 10076 KB Output is correct
16 Correct 14 ms 9816 KB Output is correct
17 Correct 12 ms 9820 KB Output is correct
18 Correct 8 ms 9564 KB Output is correct
19 Runtime error 680 ms 262144 KB Execution killed with signal 9
20 Halted 0 ms 0 KB -