Submission #1094138

#TimeUsernameProblemLanguageResultExecution timeMemory
1094138nguyen31hoang08minh2003Prosjecni (COCI16_prosjecni)C++14
120 / 120
1 ms348 KiB
#include <set> #include <map> #include <cmath> #include <queue> #include <deque> #include <stack> #include <math.h> #include <bitset> #include <vector> #include <string> #include <cstdio> #include <cctype> #include <numeric> #include <fstream> #include <sstream> #include <cstdlib> #include <iomanip> #include <cassert> #include <cstring> #include <stdio.h> #include <string.h> #include <iterator> #include <iostream> #include <algorithm> #include <strings.h> #include <functional> #include <unordered_set> #include <unordered_map> #define fore(i, a, b) for (int i = (a), i##_last = (b); i < i##_last; ++i) #define fort(i, a, b) for (int i = (a), i##_last = (b); i <= i##_last; ++i) #define ford(i, a, b) for (int i = (a), i##_last = (b); i >= i##_last; --i) #define fi first #define se second #define pb push_back #define sz(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() using namespace std; using ll = long long; using ld = long double; template<class A, class B> bool maxi(A &a, const B &b) {return (a < b) ? (a = b, true):false;}; template<class A, class B> bool mini(A &a, const B &b) {return (a > b) ? (a = b, true):false;}; typedef unsigned long long ull; typedef pair<int, int> ii; typedef vector<int> vi; typedef vector<ii> vii; typedef vector<vi> vvi; typedef vector<vii> vvii; /* v[x] + v[y] = 1 + e[x][y] (mod 2) for every x, y e[x][y] = 1 if x and y were initially connected N variables N * (N - 1) / 2 equations ------------------------------------------------- It can be noticed that if (n - 1) following equations are chosen, all remaining equations should be able to be determined v[1] + v[n] = 1 + e[1][n] (mod 2) ... v[n - 2] + v[n] = 1 + e[n - 1][n] (mod 2) because for every 1 <= x < y < n then we have v[x] + v[n] = 1 + e[x][n] v[y] + v[n] = 1 + e[y][n] => v[x] + v[y] = 1 + e[x][n] + e[y][n] this means that, as long as all remaining equations are consistent with these (n - 1) chosen equations any solutions of this systems of these (n - 1) equations can be chosen as solutions of the complete system of n * (n - 1) / 2 equations (it is obvious that the system of (n - 1) equations should have solutions; this can be easily proved by substituting one variable and determine remaining variables and check consistency) */ constexpr int MAX_N = 102; int N; ll result[MAX_N][MAX_N]; signed main() { #ifdef LOCAL freopen("input.INP", "r", stdin); // freopen("output.OUT", "w", stdout); #endif // LOCAL cin.tie(0) -> sync_with_stdio(0); cout.tie(0); cin >> N; if (N & 1) { int counter = 0; fort(x, 1, N) { fort(y, 1, N) cout << (++counter) << ' '; cout << '\n'; } return 0; } if (N == 2) { /* The average value is always between two numbers */ cout << -1 << '\n'; return 0; } int delta = 0; fort(y, 1, N) { result[1][y] = y; delta += y; } for (; delta % N; ++delta) ++result[1][N]; /* "Ceil" up average value */ delta = (result[1][N] / N + 1) * N; fort(y, 1, N) { fore(x, 2, N) { result[x][y] = result[x - 1][y] + delta; result[N][y] += result[x][y]; } result[N][y] = N * result[N - 1][y] - result[N][y] - result[1][y]; } fort(x, 1, N) { fort(y, 1, N) cout << result[x][y] << ' '; cout << '\n'; } // #ifdef LOCAL // fort(i, 1, N) { // ll row = 0, column = 0; // fort(j, 1, N) { // row += result[i][j]; // column += result[j][i]; // } // cerr << "Row " << i << ": " << 1.0 * row / N << '\n' // << "Column " << i << ": " << 1.0 * column / N << '\n'; // } // #endif // LOCAL return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...