Submission #1093625

# Submission time Handle Problem Language Result Execution time Memory
1093625 2024-09-27T06:59:46 Z CDuong Inside information (BOI21_servers) C++17
80 / 100
259 ms 28424 KB
/*
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,sse4.2,popcnt,lzcnt")
*/

#include <bits/stdc++.h>
#define taskname ""
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define i64 long long
#define isz(x) (int)x.size()
using namespace std;

template<bool ALLOW_NON_PREFIX_QUERY, class T, class F, class I>
struct fenwick_tree{
    int n;
    vector<T> data;
    F TT;
    T T_id;
    I Tinv;
    fenwick_tree(F TT, T T_id, I Tinv): TT(TT), T_id(T_id), Tinv(Tinv){ }
    fenwick_tree &operator=(const fenwick_tree &fw){
        n = fw.n;
        data = fw.data;
    }
    // O(n)
    void build(int n){
        assert(n >= 0);
        this->n = n;
        data.assign(n, T_id);
    }
    // O(n)
    void build(int n, T x){
        assert(n >= 0);
        this->n = n;
        data.assign(n, x);
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(n)
    template<class U>
    void build(const vector<U> &a){
        n = (int)a.size();
        data.resize(n);
        copy(a.begin(), a.end(), data.begin());
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(log(n))
    void update(int p, T x){
        assert(0 <= p && p < n);
        for(++ p; p <= n; p += p & -p) data[p - 1] = TT(data[p - 1], x);
    }
    // O(log(n))
    void set(int p, T x){
        update(p, TT(x, Tinv(query(p))));
    }
    // O(log(n))
    T prefix(int r) const{
        assert(0 <= r && r <= n);
        T s = T_id;
        for(; r > 0; r -= r & -r) s = TT(s, data[r - 1]);
        return s;
    }
    // O(log(n))
    T query(int l, int r) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        assert(0 <= l && l <= r && r <= n);
        if(l == r) return T_id;
        T sum_minus = T_id, sum_plus = T_id;
        for(; l < r; r -= r & -r) sum_plus = TT(sum_plus, data[r - 1]);
        for(; r < l; l -= l & -l) sum_minus = TT(sum_minus, data[l - 1]);
        return TT(sum_plus, Tinv(sum_minus));
    }
    // O(log(n))
    T query(int p) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        return query(p, p + 1);
    }
    // O(log(n))
    T query_all() const{
        return prefix(n);
    }
    // pred(sum[0, r)) is T, T, ..., T, F, F, ..., F, returns max r with T
    // O(log(n))
    int max_pref(auto pred) const{
        assert(pred(T_id));
        int p = 0;
        T sum = T_id;
        for(auto i = __lg(n + 1); i >= 0; -- i) if(p + (1 << i) <= n && pred(TT(sum, data[p + (1 << i) - 1]))){
            sum = TT(sum, data[p + (1 << i) - 1]);
            p += 1 << i;
        }
        return p;
    }
    template<class output_stream>
    friend output_stream &operator<<(output_stream &out, const fenwick_tree &fw){
        out << "{";
        for(auto i = 0; i < fw.n; ++ i){
            out << fw.query(i);
            if(i != fw.n - 1) out << ", ";
        }
        return out << '}';
    }
};

template<class T, class F, class I>
auto make_fenwick_tree(F TT, T T_id, I Tinv){
    return fenwick_tree<true, T, F, I>(TT, T_id, Tinv);
}
template<class T>
auto make_fenwick_tree_sum(){
    return fenwick_tree<true, T, plus<>, negate<>>(plus<>(), T{0}, negate<>());
}
template<class T>
auto make_fenwick_tree_product(){
    auto inverse = [](const T &x){ return 1 / x; };
    return fenwick_tree<true, T, multiplies<>, decltype(inverse)>(multiplies<>(), T{1}, inverse);
}
template<class T>
auto make_fenwick_tree_min(){
    auto TT = [&](const T &x, const T &y)->T{ return min(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}
template<class T>
auto make_fenwick_tree_max(){
    auto TT = [&](const T &x, const T &y)->T{ return max(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}

template<class T>
struct graph{
    using Weight_t = T;
    struct Edge_t{
        int from, to;
        T cost;
    };
    int n;
    vector<Edge_t> edge;
    vector<vector<int>> adj;
    function<bool(int)> ignore;
    graph(int n = 1): n(n), adj(n){
        assert(n >= 1);
    }
    graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v);
        }
        else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v);
    }
    graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w);
        }
        else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w);
    }
    graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v);
    }
    graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w);
    }
    int add_vertex(){
        adj.emplace_back();
        return n ++;
    }
    int operator()(int u, int id) const{
        #ifdef LOCAL
        assert(0 <= id && id < (int)edge.size());
        assert(edge[id].from == u || edge[id].to == u);
        #endif
        return u ^ edge[id].from ^ edge[id].to;
    }
    int link(int u, int v, T w = {}){ // insert an undirected edge
        int id = (int)edge.size();
        adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    int orient(int u, int v, T w = {}){ // insert a directed edge
        int id = (int)edge.size();
        adj[u].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    vector<int> neighbor(int u, int exclude = -1) const{
        vector<int> res;
        for(auto id: adj[u]){
            if(id == exclude || ignore && ignore(id)) continue;
            res.push_back(operator()(u, id));
        }
        return res;
    }
    void clear(){
        for(auto [u, v, w]: edge){
            adj[u].clear();
            adj[v].clear();
        }
        edge.clear();
        ignore = {};
    }
    graph transpose() const{ // the transpose of the directed graph
        graph res(n);
        for(auto id = 0; id < (int)edge.size(); ++ id){
            if(ignore && ignore(id)) continue;
            res.orient(edge[id].to, edge[id].from, edge[id].cost);
        }
        return res;
    }
    int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule)
        return (int)adj[u].size();
    }
    // The adjacency list is sorted for each vertex.
    vector<vector<int>> get_adjacency_list() const{
        vector<vector<int>> res(n);
        for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){
            if(ignore && ignore(id)) continue;
            res[(*this)(u, id)].push_back(u);
        }
        return res;
    }
    void set_ignoration_rule(const function<bool(int)> &f){
        ignore = f;
    }
    void reset_ignoration_rule(){
        ignore = nullptr;
    }
    friend ostream &operator<<(ostream &out, const graph &g){
        for(auto id = 0; id < (int)g.edge.size(); ++ id){
            if(g.ignore && g.ignore(id)) continue;
            auto &e = g.edge[id];
            out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n";
        }
        return out;
    }
};

struct Query {
    int v, qid;
    Query(int v, int qid) : v(v), qid(qid) {}
};

void solve() {
    int n, q;
    cin >> n >> q;

    graph<int> g(n);
    vector<int> tpq(n + q);
    vector<vector<Query>> queries(n);
    for (int i = 0; i < n - 1 + q; ++i) {
        char ch;
        cin >> ch;
        if (ch == 'S') {
            int u, v;
            cin >> u >> v;
            g.link(--u, --v, i);
        }
        else if (ch == 'Q') {
            int u, v;
            cin >> u >> v;
            queries[--v].emplace_back(--u, i);
            tpq[i] = 1;
        }
        else {
            int u;
            cin >> u;
            queries[--u].emplace_back(-1, i);
            tpq[i] = 2;
        }
    }

    for (int i = 0; i < n; ++i) {
        reverse(all(g.adj[i]));
    }

    int tot_sz = 0;
    vector<int> sz(n);
    vector<bool> vis(n);

    auto get_sz = [&](auto self, int u, int _pid) -> void {
        sz[u] = 1;
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            self(self, v, id);
            sz[u] += sz[v];
        }
    };

    auto find_cen = [&](auto self, int u, int _pid) -> int {
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            if (sz[v] > (tot_sz >> 1)) {
                return self(self, v, id);
            }
        }
        return u;
    };

    auto get_cen = [&](int v) -> int {
        get_sz(get_sz, v, -1);
        tot_sz = sz[v];
        return find_cen(find_cen, v, -1);
    };

    auto fenw = make_fenwick_tree_sum<int>();
    fenw.build(n + q - 1);

    vector<pair<int, int>> rst;
    vector<int> vis_dfs(n, n + q), res(n + q - 1);

    auto dfs1 = [&](auto self, int u, int _pid, int pw) -> void {
        for (auto [v, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(qid);
            }
            else {
                res[qid] |= (vis_dfs[v] <= qid);
            }
        }
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost < pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto add = [&](int u, int pw) -> void {
        vis_dfs[u] = pw;
        fenw.update(pw, 1);
        rst.emplace_back(u, pw);
    };

    auto dfs2 = [&](auto self, int u, int _pid, int pw) -> void {
        add(u, pw);
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost > pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };
    
    auto del = [&]() -> void {
        auto [u, pw] = rst.back();
        rst.pop_back();
        vis_dfs[u] = n + q;
        fenw.update(pw, -1);
    };

    auto reset = [&]() -> void {
        while (not rst.empty()) {
            del();
        }
    };

    auto centroid = [&](auto self, int u) -> void {
        vis[u] = true;
        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            add(u, g.edge[id].cost);
            dfs1(dfs1, v, -1, g.edge[id].cost);
            del();
            dfs2(dfs2, v, -1, g.edge[id].cost);
        }
        add(u, 0);
        for (auto [v, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(qid);
            }
            else {
                res[qid] |= (vis_dfs[v] <= qid);
            }
        }
        reset();

        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            int nxt_cen = get_cen(v);
            self(self, nxt_cen);
        }
    };

    int cen = get_cen(0);
    centroid(centroid, cen);

    vector<int> vc;
    for (int i = 0; i < n + q - 1; ++i) {
        if (tpq[i] == 1) {
            cout << (res[i] ? "yes" : "no") << "\n";
        }
        else if (tpq[i] == 2) {
            cout << res[i] << "\n";
        }
    }
}

signed main() {

#ifndef CDuongg
    if (fopen(taskname".inp", "r"))
        assert(freopen(taskname".inp", "r", stdin)), assert(freopen(taskname".out", "w", stdout));
#else
    freopen("bai3.inp", "r", stdin);
    freopen("bai3.out", "w", stdout);
    auto start = chrono::high_resolution_clock::now();
#endif

    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int t = 1; //cin >> t;
    while(t--) solve();

#ifdef CDuongg
   auto end = chrono::high_resolution_clock::now();
   cout << "\n"; for(int i = 1; i <= 100; ++i) cout << '=';
   cout << "\nExecution time: " << chrono::duration_cast<chrono::milliseconds> (end - start).count() << "[ms]" << endl;
#endif

}

Compilation message

servers.cpp:84:18: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
   84 |     int max_pref(auto pred) const{
      |                  ^~~~
# Verdict Execution time Memory Grader output
1 Correct 17 ms 4700 KB Output is correct
2 Correct 24 ms 5628 KB Output is correct
3 Correct 22 ms 5456 KB Output is correct
4 Correct 29 ms 5684 KB Output is correct
5 Correct 25 ms 5780 KB Output is correct
6 Correct 23 ms 5760 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 4700 KB Output is correct
2 Correct 24 ms 5628 KB Output is correct
3 Correct 22 ms 5456 KB Output is correct
4 Correct 29 ms 5684 KB Output is correct
5 Correct 25 ms 5780 KB Output is correct
6 Correct 23 ms 5760 KB Output is correct
7 Correct 16 ms 4440 KB Output is correct
8 Incorrect 27 ms 5200 KB Extra information in the output file
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4676 KB Output is correct
2 Correct 94 ms 22572 KB Output is correct
3 Correct 105 ms 22656 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4676 KB Output is correct
2 Correct 94 ms 22572 KB Output is correct
3 Correct 105 ms 22656 KB Output is correct
4 Correct 16 ms 4432 KB Output is correct
5 Correct 91 ms 22656 KB Output is correct
6 Correct 64 ms 20720 KB Output is correct
7 Correct 71 ms 20864 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4700 KB Output is correct
2 Correct 209 ms 27240 KB Output is correct
3 Correct 204 ms 27396 KB Output is correct
4 Correct 166 ms 28424 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4700 KB Output is correct
2 Correct 209 ms 27240 KB Output is correct
3 Correct 204 ms 27396 KB Output is correct
4 Correct 166 ms 28424 KB Output is correct
5 Correct 16 ms 4440 KB Output is correct
6 Correct 202 ms 26888 KB Output is correct
7 Correct 171 ms 28168 KB Output is correct
8 Correct 200 ms 26484 KB Output is correct
9 Correct 206 ms 26628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 21 ms 4444 KB Output is correct
2 Correct 146 ms 22072 KB Output is correct
3 Correct 140 ms 20808 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 21 ms 4444 KB Output is correct
2 Correct 146 ms 22072 KB Output is correct
3 Correct 140 ms 20808 KB Output is correct
4 Correct 16 ms 4440 KB Output is correct
5 Correct 162 ms 21688 KB Output is correct
6 Correct 148 ms 20688 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4696 KB Output is correct
2 Correct 190 ms 27400 KB Output is correct
3 Correct 189 ms 27396 KB Output is correct
4 Correct 154 ms 28416 KB Output is correct
5 Correct 16 ms 4696 KB Output is correct
6 Correct 144 ms 22012 KB Output is correct
7 Correct 150 ms 21000 KB Output is correct
8 Correct 142 ms 21508 KB Output is correct
9 Correct 146 ms 21508 KB Output is correct
10 Correct 247 ms 24600 KB Output is correct
11 Correct 236 ms 24580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4696 KB Output is correct
2 Correct 190 ms 27400 KB Output is correct
3 Correct 189 ms 27396 KB Output is correct
4 Correct 154 ms 28416 KB Output is correct
5 Correct 16 ms 4696 KB Output is correct
6 Correct 144 ms 22012 KB Output is correct
7 Correct 150 ms 21000 KB Output is correct
8 Correct 142 ms 21508 KB Output is correct
9 Correct 146 ms 21508 KB Output is correct
10 Correct 247 ms 24600 KB Output is correct
11 Correct 236 ms 24580 KB Output is correct
12 Correct 16 ms 4444 KB Output is correct
13 Correct 205 ms 26888 KB Output is correct
14 Correct 187 ms 28136 KB Output is correct
15 Correct 195 ms 26740 KB Output is correct
16 Correct 215 ms 26632 KB Output is correct
17 Correct 17 ms 4432 KB Output is correct
18 Correct 162 ms 21764 KB Output is correct
19 Correct 148 ms 20740 KB Output is correct
20 Correct 157 ms 21252 KB Output is correct
21 Correct 150 ms 21256 KB Output is correct
22 Correct 249 ms 24068 KB Output is correct
23 Correct 247 ms 24580 KB Output is correct
24 Correct 259 ms 24840 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 4432 KB Output is correct
2 Correct 24 ms 5460 KB Output is correct
3 Correct 22 ms 5460 KB Output is correct
4 Correct 25 ms 5720 KB Output is correct
5 Correct 25 ms 5968 KB Output is correct
6 Correct 24 ms 5716 KB Output is correct
7 Correct 16 ms 4700 KB Output is correct
8 Correct 88 ms 22748 KB Output is correct
9 Correct 89 ms 22904 KB Output is correct
10 Correct 17 ms 4696 KB Output is correct
11 Correct 194 ms 27300 KB Output is correct
12 Correct 197 ms 27408 KB Output is correct
13 Correct 161 ms 28424 KB Output is correct
14 Correct 15 ms 4700 KB Output is correct
15 Correct 151 ms 21936 KB Output is correct
16 Correct 143 ms 20996 KB Output is correct
17 Correct 142 ms 21508 KB Output is correct
18 Correct 145 ms 21512 KB Output is correct
19 Correct 234 ms 24788 KB Output is correct
20 Correct 236 ms 24616 KB Output is correct
21 Correct 112 ms 23200 KB Output is correct
22 Correct 101 ms 22536 KB Output is correct
23 Correct 127 ms 21504 KB Output is correct
24 Correct 131 ms 21724 KB Output is correct
25 Correct 184 ms 25348 KB Output is correct
26 Correct 143 ms 20564 KB Output is correct
27 Correct 133 ms 20488 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 4432 KB Output is correct
2 Correct 24 ms 5460 KB Output is correct
3 Correct 22 ms 5460 KB Output is correct
4 Correct 25 ms 5720 KB Output is correct
5 Correct 25 ms 5968 KB Output is correct
6 Correct 24 ms 5716 KB Output is correct
7 Correct 16 ms 4700 KB Output is correct
8 Correct 88 ms 22748 KB Output is correct
9 Correct 89 ms 22904 KB Output is correct
10 Correct 17 ms 4696 KB Output is correct
11 Correct 194 ms 27300 KB Output is correct
12 Correct 197 ms 27408 KB Output is correct
13 Correct 161 ms 28424 KB Output is correct
14 Correct 15 ms 4700 KB Output is correct
15 Correct 151 ms 21936 KB Output is correct
16 Correct 143 ms 20996 KB Output is correct
17 Correct 142 ms 21508 KB Output is correct
18 Correct 145 ms 21512 KB Output is correct
19 Correct 234 ms 24788 KB Output is correct
20 Correct 236 ms 24616 KB Output is correct
21 Correct 112 ms 23200 KB Output is correct
22 Correct 101 ms 22536 KB Output is correct
23 Correct 127 ms 21504 KB Output is correct
24 Correct 131 ms 21724 KB Output is correct
25 Correct 184 ms 25348 KB Output is correct
26 Correct 143 ms 20564 KB Output is correct
27 Correct 133 ms 20488 KB Output is correct
28 Correct 16 ms 4488 KB Output is correct
29 Incorrect 26 ms 5360 KB Extra information in the output file
30 Halted 0 ms 0 KB -