Submission #1093615

# Submission time Handle Problem Language Result Execution time Memory
1093615 2024-09-27T06:49:40 Z CDuong Inside information (BOI21_servers) C++17
80 / 100
311 ms 25472 KB
/*
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,sse4.2,popcnt,lzcnt")
*/

#include <bits/stdc++.h>
#define taskname ""
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define i64 long long
#define isz(x) (int)x.size()
using namespace std;

template<bool ALLOW_NON_PREFIX_QUERY, class T, class F, class I>
struct fenwick_tree{
    int n;
    vector<T> data;
    F TT;
    T T_id;
    I Tinv;
    fenwick_tree(F TT, T T_id, I Tinv): TT(TT), T_id(T_id), Tinv(Tinv){ }
    fenwick_tree &operator=(const fenwick_tree &fw){
        n = fw.n;
        data = fw.data;
    }
    // O(n)
    void build(int n){
        assert(n >= 0);
        this->n = n;
        data.assign(n, T_id);
    }
    // O(n)
    void build(int n, T x){
        assert(n >= 0);
        this->n = n;
        data.assign(n, x);
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(n)
    template<class U>
    void build(const vector<U> &a){
        n = (int)a.size();
        data.resize(n);
        copy(a.begin(), a.end(), data.begin());
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(log(n))
    void update(int p, T x){
        assert(0 <= p && p < n);
        for(++ p; p <= n; p += p & -p) data[p - 1] = TT(data[p - 1], x);
    }
    // O(log(n))
    void set(int p, T x){
        update(p, TT(x, Tinv(query(p))));
    }
    // O(log(n))
    T prefix(int r) const{
        assert(0 <= r && r <= n);
        T s = T_id;
        for(; r > 0; r -= r & -r) s = TT(s, data[r - 1]);
        return s;
    }
    // O(log(n))
    T query(int l, int r) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        assert(0 <= l && l <= r && r <= n);
        if(l == r) return T_id;
        T sum_minus = T_id, sum_plus = T_id;
        for(; l < r; r -= r & -r) sum_plus = TT(sum_plus, data[r - 1]);
        for(; r < l; l -= l & -l) sum_minus = TT(sum_minus, data[l - 1]);
        return TT(sum_plus, Tinv(sum_minus));
    }
    // O(log(n))
    T query(int p) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        return query(p, p + 1);
    }
    // O(log(n))
    T query_all() const{
        return prefix(n);
    }
    // pred(sum[0, r)) is T, T, ..., T, F, F, ..., F, returns max r with T
    // O(log(n))
    int max_pref(auto pred) const{
        assert(pred(T_id));
        int p = 0;
        T sum = T_id;
        for(auto i = __lg(n + 1); i >= 0; -- i) if(p + (1 << i) <= n && pred(TT(sum, data[p + (1 << i) - 1]))){
            sum = TT(sum, data[p + (1 << i) - 1]);
            p += 1 << i;
        }
        return p;
    }
    template<class output_stream>
    friend output_stream &operator<<(output_stream &out, const fenwick_tree &fw){
        out << "{";
        for(auto i = 0; i < fw.n; ++ i){
            out << fw.query(i);
            if(i != fw.n - 1) out << ", ";
        }
        return out << '}';
    }
};

template<class T, class F, class I>
auto make_fenwick_tree(F TT, T T_id, I Tinv){
    return fenwick_tree<true, T, F, I>(TT, T_id, Tinv);
}
template<class T>
auto make_fenwick_tree_sum(){
    return fenwick_tree<true, T, plus<>, negate<>>(plus<>(), T{0}, negate<>());
}
template<class T>
auto make_fenwick_tree_product(){
    auto inverse = [](const T &x){ return 1 / x; };
    return fenwick_tree<true, T, multiplies<>, decltype(inverse)>(multiplies<>(), T{1}, inverse);
}
template<class T>
auto make_fenwick_tree_min(){
    auto TT = [&](const T &x, const T &y)->T{ return min(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}
template<class T>
auto make_fenwick_tree_max(){
    auto TT = [&](const T &x, const T &y)->T{ return max(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}

template<class T>
struct graph{
    using Weight_t = T;
    struct Edge_t{
        int from, to;
        T cost;
    };
    int n;
    vector<Edge_t> edge;
    vector<vector<int>> adj;
    function<bool(int)> ignore;
    graph(int n = 1): n(n), adj(n){
        assert(n >= 1);
    }
    graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v);
        }
        else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v);
    }
    graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w);
        }
        else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w);
    }
    graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v);
    }
    graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w);
    }
    int add_vertex(){
        adj.emplace_back();
        return n ++;
    }
    int operator()(int u, int id) const{
        #ifdef LOCAL
        assert(0 <= id && id < (int)edge.size());
        assert(edge[id].from == u || edge[id].to == u);
        #endif
        return u ^ edge[id].from ^ edge[id].to;
    }
    int link(int u, int v, T w = {}){ // insert an undirected edge
        int id = (int)edge.size();
        adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    int orient(int u, int v, T w = {}){ // insert a directed edge
        int id = (int)edge.size();
        adj[u].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    vector<int> neighbor(int u, int exclude = -1) const{
        vector<int> res;
        for(auto id: adj[u]){
            if(id == exclude || ignore && ignore(id)) continue;
            res.push_back(operator()(u, id));
        }
        return res;
    }
    void clear(){
        for(auto [u, v, w]: edge){
            adj[u].clear();
            adj[v].clear();
        }
        edge.clear();
        ignore = {};
    }
    graph transpose() const{ // the transpose of the directed graph
        graph res(n);
        for(auto id = 0; id < (int)edge.size(); ++ id){
            if(ignore && ignore(id)) continue;
            res.orient(edge[id].to, edge[id].from, edge[id].cost);
        }
        return res;
    }
    int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule)
        return (int)adj[u].size();
    }
    // The adjacency list is sorted for each vertex.
    vector<vector<int>> get_adjacency_list() const{
        vector<vector<int>> res(n);
        for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){
            if(ignore && ignore(id)) continue;
            res[(*this)(u, id)].push_back(u);
        }
        return res;
    }
    void set_ignoration_rule(const function<bool(int)> &f){
        ignore = f;
    }
    void reset_ignoration_rule(){
        ignore = nullptr;
    }
    friend ostream &operator<<(ostream &out, const graph &g){
        for(auto id = 0; id < (int)g.edge.size(); ++ id){
            if(g.ignore && g.ignore(id)) continue;
            auto &e = g.edge[id];
            out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n";
        }
        return out;
    }
};

struct Query {
    int v, val, qid;
    Query(int v, int val, int qid) : v(v), val(val), qid(qid) {}
};

void solve() {
    int n, q;
    cin >> n >> q;

    graph<int> g(n);
    vector<int> tpq(n + q), res(n + q);
    vector<vector<Query>> queries(n);
    for (int i = 0; i < n - 1 + q; ++i) {
        char ch;
        cin >> ch;
        if (ch == 'S') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            g.link(u, v, i);
            tpq[i] = 0;
        }
        else if (ch == 'Q') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            queries[v].emplace_back(u, i, i);
            tpq[i] = 1;
        }
        else {
            int u;
            cin >> u;
            --u;
            queries[u].emplace_back(-1, i, i);
            tpq[i] = 2;
        }
    }

    for (int i = 0; i < n; ++i) {
        reverse(all(g.adj[i]));
    }

    int tot_sz = 0;
    vector<bool> vis(n);
    vector<int> sz(n);

    auto get_sz = [&](auto self, int u, int _pid) -> void {
        sz[u] = 1;
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            self(self, v, id);
            sz[u] += sz[v];
        }
    };

    auto find_cen = [&](auto self, int u, int _pid) -> int {
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            if (sz[v] > (tot_sz >> 1)) {
                return self(self, v, id);
            }
        }
        return u;
    };

    auto get_cen = [&](int v) -> int {
        get_sz(get_sz, v, -1);
        tot_sz = sz[v];
        return find_cen(find_cen, v, -1);
    };

    auto fenw = make_fenwick_tree_sum<int>();
    fenw.build(n + q);

    vector<int> vis_dfs(n, n + q);
    vector<pair<int, int>> rst;
    auto dfs1 = [&](auto self, int u, int _pid, int pw) -> void {
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost < pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto add = [&](int u, int pw) -> void {
        vis_dfs[u] = pw;
        fenw.update(pw, 1);
        rst.emplace_back(u, pw);
    };

    auto dfs2 = [&](auto self, int u, int _pid, int pw) -> void {
        add(u, pw);
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost > pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto reset = [&]() -> void {
        while (not rst.empty()) {
            auto [u, pw] = rst.back();
            rst.pop_back();
            vis_dfs[u] = n + q;
            fenw.update(pw, -1);
        }
    };

    auto centroid = [&](auto self, int u) -> void {
        vis[u] = true;
        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            add(u, g.edge[id].cost);
            dfs1(dfs1, v, -1, g.edge[id].cost);
            {
                auto [u, pw] = rst.back();
                rst.pop_back();
                vis_dfs[u] = n + q;
                fenw.update(pw, -1);
            }
            dfs2(dfs2, v, -1, g.edge[id].cost);
        }
        add(u, 0);
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        reset();

        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            int nxt_cen = get_cen(v);
            self(self, nxt_cen);
        }
    };

    int cen = get_cen(0);
    centroid(centroid, cen);

    int cntq = 0;
    for (int i = 0; i < n + q - 1; ++i) {
        if (tpq[i] == 1) {
            cout << (res[i] ? "yes" : "no");
        }
        else if (tpq[i] == 2)   {
            cout << res[i];
        }
        if (tpq[i] and ++cntq < q) {
            cout << "\n";
        }
    }
}

signed main() {

#ifndef CDuongg
    if (fopen(taskname".inp", "r"))
        assert(freopen(taskname".inp", "r", stdin)), assert(freopen(taskname".out", "w", stdout));
#else
    freopen("bai3.inp", "r", stdin);
    freopen("bai3.out", "w", stdout);
    auto start = chrono::high_resolution_clock::now();
#endif

    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int t = 1; //cin >> t;
    while(t--) solve();

#ifdef CDuongg
   auto end = chrono::high_resolution_clock::now();
   cout << "\n"; for(int i = 1; i <= 100; ++i) cout << '=';
   cout << "\nExecution time: " << chrono::duration_cast<chrono::milliseconds> (end - start).count() << "[ms]" << endl;
#endif

}

Compilation message

servers.cpp:84:18: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
   84 |     int max_pref(auto pred) const{
      |                  ^~~~
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4440 KB Output is correct
2 Correct 23 ms 4956 KB Output is correct
3 Correct 21 ms 4700 KB Output is correct
4 Correct 24 ms 4956 KB Output is correct
5 Correct 23 ms 5200 KB Output is correct
6 Correct 22 ms 4956 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4440 KB Output is correct
2 Correct 23 ms 4956 KB Output is correct
3 Correct 21 ms 4700 KB Output is correct
4 Correct 24 ms 4956 KB Output is correct
5 Correct 23 ms 5200 KB Output is correct
6 Correct 22 ms 4956 KB Output is correct
7 Correct 16 ms 4188 KB Output is correct
8 Incorrect 25 ms 5040 KB Extra information in the output file
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4440 KB Output is correct
2 Correct 90 ms 20236 KB Output is correct
3 Correct 100 ms 20220 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4440 KB Output is correct
2 Correct 90 ms 20236 KB Output is correct
3 Correct 100 ms 20220 KB Output is correct
4 Correct 16 ms 4188 KB Output is correct
5 Correct 87 ms 20292 KB Output is correct
6 Correct 61 ms 19504 KB Output is correct
7 Correct 61 ms 19432 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4440 KB Output is correct
2 Correct 191 ms 24148 KB Output is correct
3 Correct 188 ms 24324 KB Output is correct
4 Correct 162 ms 25352 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4440 KB Output is correct
2 Correct 191 ms 24148 KB Output is correct
3 Correct 188 ms 24324 KB Output is correct
4 Correct 162 ms 25352 KB Output is correct
5 Correct 15 ms 4184 KB Output is correct
6 Correct 196 ms 24328 KB Output is correct
7 Correct 169 ms 25352 KB Output is correct
8 Correct 214 ms 24068 KB Output is correct
9 Correct 212 ms 24072 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4444 KB Output is correct
2 Correct 150 ms 18836 KB Output is correct
3 Correct 138 ms 17924 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4444 KB Output is correct
2 Correct 150 ms 18836 KB Output is correct
3 Correct 138 ms 17924 KB Output is correct
4 Correct 16 ms 4184 KB Output is correct
5 Correct 151 ms 18944 KB Output is correct
6 Correct 143 ms 17928 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4440 KB Output is correct
2 Correct 196 ms 24328 KB Output is correct
3 Correct 186 ms 24324 KB Output is correct
4 Correct 161 ms 25368 KB Output is correct
5 Correct 19 ms 4444 KB Output is correct
6 Correct 148 ms 18960 KB Output is correct
7 Correct 148 ms 18000 KB Output is correct
8 Correct 142 ms 18440 KB Output is correct
9 Correct 134 ms 18436 KB Output is correct
10 Correct 228 ms 21504 KB Output is correct
11 Correct 247 ms 21452 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4440 KB Output is correct
2 Correct 196 ms 24328 KB Output is correct
3 Correct 186 ms 24324 KB Output is correct
4 Correct 161 ms 25368 KB Output is correct
5 Correct 19 ms 4444 KB Output is correct
6 Correct 148 ms 18960 KB Output is correct
7 Correct 148 ms 18000 KB Output is correct
8 Correct 142 ms 18440 KB Output is correct
9 Correct 134 ms 18436 KB Output is correct
10 Correct 228 ms 21504 KB Output is correct
11 Correct 247 ms 21452 KB Output is correct
12 Correct 17 ms 4184 KB Output is correct
13 Correct 227 ms 24248 KB Output is correct
14 Correct 185 ms 25364 KB Output is correct
15 Correct 222 ms 24072 KB Output is correct
16 Correct 213 ms 24072 KB Output is correct
17 Correct 19 ms 4372 KB Output is correct
18 Correct 178 ms 18980 KB Output is correct
19 Correct 195 ms 17856 KB Output is correct
20 Correct 180 ms 18440 KB Output is correct
21 Correct 151 ms 18444 KB Output is correct
22 Correct 305 ms 21524 KB Output is correct
23 Correct 281 ms 21836 KB Output is correct
24 Correct 311 ms 21944 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 4444 KB Output is correct
2 Correct 25 ms 5108 KB Output is correct
3 Correct 39 ms 4692 KB Output is correct
4 Correct 26 ms 4956 KB Output is correct
5 Correct 24 ms 5280 KB Output is correct
6 Correct 24 ms 4948 KB Output is correct
7 Correct 16 ms 4548 KB Output is correct
8 Correct 102 ms 20284 KB Output is correct
9 Correct 108 ms 20348 KB Output is correct
10 Correct 17 ms 4440 KB Output is correct
11 Correct 223 ms 24328 KB Output is correct
12 Correct 221 ms 24184 KB Output is correct
13 Correct 169 ms 25472 KB Output is correct
14 Correct 17 ms 4444 KB Output is correct
15 Correct 187 ms 18812 KB Output is correct
16 Correct 142 ms 17924 KB Output is correct
17 Correct 186 ms 18488 KB Output is correct
18 Correct 181 ms 18504 KB Output is correct
19 Correct 262 ms 21516 KB Output is correct
20 Correct 241 ms 21600 KB Output is correct
21 Correct 115 ms 20228 KB Output is correct
22 Correct 108 ms 19352 KB Output is correct
23 Correct 132 ms 18636 KB Output is correct
24 Correct 156 ms 18696 KB Output is correct
25 Correct 216 ms 22292 KB Output is correct
26 Correct 148 ms 17668 KB Output is correct
27 Correct 166 ms 17792 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 4444 KB Output is correct
2 Correct 25 ms 5108 KB Output is correct
3 Correct 39 ms 4692 KB Output is correct
4 Correct 26 ms 4956 KB Output is correct
5 Correct 24 ms 5280 KB Output is correct
6 Correct 24 ms 4948 KB Output is correct
7 Correct 16 ms 4548 KB Output is correct
8 Correct 102 ms 20284 KB Output is correct
9 Correct 108 ms 20348 KB Output is correct
10 Correct 17 ms 4440 KB Output is correct
11 Correct 223 ms 24328 KB Output is correct
12 Correct 221 ms 24184 KB Output is correct
13 Correct 169 ms 25472 KB Output is correct
14 Correct 17 ms 4444 KB Output is correct
15 Correct 187 ms 18812 KB Output is correct
16 Correct 142 ms 17924 KB Output is correct
17 Correct 186 ms 18488 KB Output is correct
18 Correct 181 ms 18504 KB Output is correct
19 Correct 262 ms 21516 KB Output is correct
20 Correct 241 ms 21600 KB Output is correct
21 Correct 115 ms 20228 KB Output is correct
22 Correct 108 ms 19352 KB Output is correct
23 Correct 132 ms 18636 KB Output is correct
24 Correct 156 ms 18696 KB Output is correct
25 Correct 216 ms 22292 KB Output is correct
26 Correct 148 ms 17668 KB Output is correct
27 Correct 166 ms 17792 KB Output is correct
28 Correct 20 ms 4184 KB Output is correct
29 Incorrect 26 ms 4956 KB Extra information in the output file
30 Halted 0 ms 0 KB -