#include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
#pragma GCC target("avx2")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#pragma GCC target("popcnt")
using namespace std;
using ll = long long;
using ull = unsigned long long;
using lld = long double;
using vi = vector<int>;
using vll = vector<ll>;
using ii = pair<int,int>;
using pll = pair<ll, ll>;
using vii = vector<ii>;
using vpll = vector<pll>;
#define endl '\n'
#define all(x) x.begin(),x.end()
#define lsb(x) x&(-x)
#define gcd(a,b) __gcd(a,b)
#define sz(x) (int)x.size()
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define fls cout.flush()
#define fore(i,l,r) for(auto i=l;i<r;i++)
#define fo(i,n) fore(i,0,n)
#define forex(i,r,l) for(auto i=r; i>=l;i--)
#define ffo(i,n) forex(i,n-1,0)
bool cmin(int &a, int b){if(b<a){a=b;return 1;}return 0;}
bool cmax(int &a, int b){if(b>a){a=b;return 1;}return 0;}
void valid(ll in){cout<<((in)?"YES\n":"NO\n");}
ll lcm(ll a, ll b){return (a/gcd(a,b))*b;}
ll gauss(ll n){return (n*(n+1))/2;}
const int N = 2e5 + 7, LOG=20;
vi graph[N];
int ni[N],szl[N],szn[N],tin[N],tout[N],heavy[N],pa[N],anc[N],cn[N];
int timer,ans,r,n,q,k,h;
struct SegTree{
SegTree *left,*right;
int l,r,c,lz;
SegTree(){}
SegTree(int l,int r):l(l),r(r),c(0),lz(0),left(nullptr),right(nullptr){
if(l==r)return;
int m=(l+r)/2;
left=new SegTree(l, m);
right=new SegTree(m+1,r);
}
void push(){
if(lz)c=r-l+1-c;
if(l!=r){
left->lz^=lz;
right->lz^=lz;
}
lz=0;
}
void update(int i,int j){
push();
if(l>j||r<i)return;
if(l>=i&&r<=j){
lz^=1;
push();
return;
}
left->update(i,j);
right->update(i,j);
c=left->c+right->c;
}
};
SegTree *root;
void dfs(int u,int p=0){
szl[u]=(sz(graph[u])==1);
h+=(sz(graph[u])==1);
szn[u]=1;
for(int v:graph[u]){
if(v==p)continue;
ni[v]=ni[u]+1;
pa[v]=u;
dfs(v, u);
szl[u]+=szl[v];
szn[u]+=szn[v];
}
for(int v:graph[u]){
if(v!=p&&szn[heavy[u]]<szn[v]){
heavy[u]=v;
}
}
}
void dfs1(int u,int p,int anct){
tin[u]=timer++;
if(sz(graph[u])>1)dfs1(heavy[u], u, anct);
anc[u]=anct;
if(szl[u]&1)root->update(tin[u],tin[u]);
for(int v:graph[u]){
if(v==p||v==heavy[u])continue;
dfs1(v, u, v);
}
}
void update(int u){
while(u != 0){
root->update(tin[anc[u]], tin[u]);
u=pa[anc[u]];
}
}
void test_case(){
cin>>n>>q;
fo(i,n-1){
int a,b;
cin>>a>>b;
cn[a]++;
cn[b]++;
graph[a].pb(b);
graph[b].pb(a);
}
fore(i,1,n+1)if(sz(graph[i])>1)r=i;
root=new SegTree(0, n-1);
dfs(r);
dfs1(r, 0, r);
while(q--){
cin>>k;
vi u(k);
fo(i,k)cin>>u[i];
int ans=0;
fo(i,k){
cn[u[i]]++;
if(cn[u[i]]==2)continue;
h++;
update(u[i]);
}
root->push();
ans=2*n+k-2-root->c;
if(h&1)cout<<-1<<endl;
else cout<<ans<<endl;
fo(i,k){
cn[u[i]]--;
if(cn[u[i]]==1)continue;
h--;
update(u[i]);
}
}
}
int main(){cin.tie(0)->sync_with_stdio(0);
int t=1;
// cin >> t;
while(t--)test_case();
}
Compilation message
cleaning.cpp:4: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
4 | #pragma GCC optimization ("O3")
|
cleaning.cpp:5: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
5 | #pragma GCC optimization ("unroll-loops")
|
cleaning.cpp: In constructor 'SegTree::SegTree(int, int)':
cleaning.cpp:46:15: warning: 'SegTree::lz' will be initialized after [-Wreorder]
46 | int l,r,c,lz;
| ^~
cleaning.cpp:45:14: warning: 'SegTree* SegTree::left' [-Wreorder]
45 | SegTree *left,*right;
| ^~~~
cleaning.cpp:48:5: warning: when initialized here [-Wreorder]
48 | SegTree(int l,int r):l(l),r(r),c(0),lz(0),left(nullptr),right(nullptr){
| ^~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
4968 KB |
Output is correct |
2 |
Correct |
79 ms |
8872 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
37 ms |
6248 KB |
Output is correct |
2 |
Correct |
39 ms |
6248 KB |
Output is correct |
3 |
Correct |
46 ms |
21452 KB |
Output is correct |
4 |
Correct |
66 ms |
17408 KB |
Output is correct |
5 |
Correct |
75 ms |
22384 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
36 ms |
7004 KB |
Output is correct |
2 |
Correct |
35 ms |
7004 KB |
Output is correct |
3 |
Correct |
62 ms |
29524 KB |
Output is correct |
4 |
Correct |
108 ms |
28180 KB |
Output is correct |
5 |
Correct |
50 ms |
27220 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
67 ms |
9304 KB |
Output is correct |
2 |
Correct |
40 ms |
8540 KB |
Output is correct |
3 |
Correct |
12 ms |
8536 KB |
Output is correct |
4 |
Correct |
11 ms |
9052 KB |
Output is correct |
5 |
Correct |
13 ms |
9048 KB |
Output is correct |
6 |
Correct |
42 ms |
9308 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
102 ms |
16980 KB |
Output is correct |
2 |
Correct |
165 ms |
16720 KB |
Output is correct |
3 |
Correct |
132 ms |
11344 KB |
Output is correct |
4 |
Correct |
173 ms |
16720 KB |
Output is correct |
5 |
Correct |
171 ms |
16720 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
177 ms |
23364 KB |
Output is correct |
2 |
Correct |
84 ms |
26196 KB |
Output is correct |
3 |
Correct |
119 ms |
25392 KB |
Output is correct |
4 |
Correct |
108 ms |
25832 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
4968 KB |
Output is correct |
2 |
Correct |
79 ms |
8872 KB |
Output is correct |
3 |
Correct |
37 ms |
6248 KB |
Output is correct |
4 |
Correct |
39 ms |
6248 KB |
Output is correct |
5 |
Correct |
46 ms |
21452 KB |
Output is correct |
6 |
Correct |
66 ms |
17408 KB |
Output is correct |
7 |
Correct |
75 ms |
22384 KB |
Output is correct |
8 |
Correct |
36 ms |
7004 KB |
Output is correct |
9 |
Correct |
35 ms |
7004 KB |
Output is correct |
10 |
Correct |
62 ms |
29524 KB |
Output is correct |
11 |
Correct |
108 ms |
28180 KB |
Output is correct |
12 |
Correct |
50 ms |
27220 KB |
Output is correct |
13 |
Correct |
67 ms |
9304 KB |
Output is correct |
14 |
Correct |
40 ms |
8540 KB |
Output is correct |
15 |
Correct |
12 ms |
8536 KB |
Output is correct |
16 |
Correct |
11 ms |
9052 KB |
Output is correct |
17 |
Correct |
13 ms |
9048 KB |
Output is correct |
18 |
Correct |
42 ms |
9308 KB |
Output is correct |
19 |
Correct |
102 ms |
16980 KB |
Output is correct |
20 |
Correct |
165 ms |
16720 KB |
Output is correct |
21 |
Correct |
132 ms |
11344 KB |
Output is correct |
22 |
Correct |
173 ms |
16720 KB |
Output is correct |
23 |
Correct |
171 ms |
16720 KB |
Output is correct |
24 |
Correct |
177 ms |
23364 KB |
Output is correct |
25 |
Correct |
84 ms |
26196 KB |
Output is correct |
26 |
Correct |
119 ms |
25392 KB |
Output is correct |
27 |
Correct |
108 ms |
25832 KB |
Output is correct |
28 |
Correct |
121 ms |
15696 KB |
Output is correct |
29 |
Correct |
142 ms |
24916 KB |
Output is correct |
30 |
Correct |
68 ms |
22428 KB |
Output is correct |
31 |
Correct |
115 ms |
27988 KB |
Output is correct |
32 |
Correct |
171 ms |
16588 KB |
Output is correct |
33 |
Correct |
110 ms |
22356 KB |
Output is correct |
34 |
Correct |
176 ms |
24656 KB |
Output is correct |
35 |
Correct |
128 ms |
25688 KB |
Output is correct |