// #include <bits/stdc++.h>
// using namespace std;
// int H,W;
// void dfs(int r,int c,vector<vector<int>>& matrix,vector<vector<int>>& minDist){
// // cout << r << " " << c << endl;
// int dx[4] = {0,1,-1,0};
// int dy[4] = {1,0,0,-1};
// for(int i = 0;i < 4;i++){
// int newX = r+dx[i];
// int newY = c+dy[i];
// if(newX < 0 || newY < 0 || newX >= H || newY >= W){
// continue;
// }
// if(matrix[newX][newY] == 0)continue;
// int newDist = minDist[r][c];
// if(matrix[newX][newY] != matrix[r][c]){
// newDist++;
// }
// if(minDist[newX][newY] > newDist){
// minDist[newX][newY] = newDist;
// dfs(newX,newY,matrix,minDist);
// }
// }
// }
// int main(){
// cin.tie(0);
// ios_base::sync_with_stdio(0);
// //start here
//
// cin >> H >> W;
// vector<vector<int>> matrix(H,vector<int>(W,0));
//
// for(int i = 0;i < H;i++){
// for(int j = 0; j < W;j++){
// char tmp;
// cin >> tmp;
// if(tmp == 'F'){
// matrix[i][j] = 1;
// }else if(tmp == 'R'){
// matrix[i][j] = 2;
// }
// }
// }
// vector<vector<int>> min_dist(H,vector<int>(W,INT_MAX));
// int ans = 0;
// min_dist[0][0] = 1;
// dfs(0,0,matrix,min_dist);
// for(int i = 0; i < H;i++){
// for(int j = 0; j < W;j++){
// if(matrix[i][j] != 0){
// ans = max(min_dist[i][j],ans);
// // cout << min_dist[i][j] << " ";
// }
// // else{
// // cout << 0 << " ";
// // }
// }
// // cout << endl;
// }
// cout << ans;
// }
#include <bits/stdc++.h>
using namespace std;
int H, W;
int dx[4] = {0, 1, -1, 0};
int dy[4] = {1, 0, 0, -1};
int bfs_min_animals(vector<vector<int>>& matrix) {
vector<vector<int>> min_dist(H, vector<int>(W, INT_MAX));
deque<pair<int, int>> q;
// Start from the top-left corner
q.push_front({0, 0});
min_dist[0][0] = 1; // First animal starts at (0,0)
while (!q.empty()) {
int r = q.front().first;
int c = q.front().second;
q.pop_front();
for (int i = 0; i < 4; ++i) {
int newX = r + dx[i];
int newY = c + dy[i];
if (newX < 0 || newY < 0 || newX >= H || newY >= W) continue;
if (matrix[newX][newY] == 0) continue; // Untouched snow
// Calculate the new cost
int newDist = min_dist[r][c];
if (matrix[newX][newY] != matrix[r][c]) {
newDist++; // Different track, increase animal count
}
if (newDist < min_dist[newX][newY]) {
min_dist[newX][newY] = newDist;
if (matrix[newX][newY] == matrix[r][c]) {
q.push_front({newX, newY}); // Same track, prioritize by pushing to front
} else {
q.push_back({newX, newY}); // Different track, explore later
}
}
}
}
// The answer is the maximum value in the min_dist matrix
int ans = 0;
for (int i = 0; i < H; ++i) {
for (int j = 0; j < W; ++j) {
if (matrix[i][j] != 0) {
ans = max(ans, min_dist[i][j]);
}
}
}
return ans;
}
int main() {
cin.tie(0);
ios_base::sync_with_stdio(0);
cin >> H >> W;
vector<vector<int>> matrix(H, vector<int>(W, 0));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
char tmp;
cin >> tmp;
if (tmp == 'F') {
matrix[i][j] = 1;
} else if (tmp == 'R') {
matrix[i][j] = 2;
}
}
}
cout << bfs_min_animals(matrix) << "\n";
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
12 ms |
2648 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
9 ms |
1880 KB |
Output is correct |
5 |
Correct |
3 ms |
1116 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
1 ms |
348 KB |
Output is correct |
9 |
Correct |
1 ms |
348 KB |
Output is correct |
10 |
Correct |
3 ms |
860 KB |
Output is correct |
11 |
Correct |
2 ms |
860 KB |
Output is correct |
12 |
Correct |
4 ms |
1116 KB |
Output is correct |
13 |
Correct |
2 ms |
1116 KB |
Output is correct |
14 |
Correct |
3 ms |
1116 KB |
Output is correct |
15 |
Correct |
10 ms |
2652 KB |
Output is correct |
16 |
Correct |
12 ms |
2680 KB |
Output is correct |
17 |
Correct |
10 ms |
2396 KB |
Output is correct |
18 |
Correct |
6 ms |
1884 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
1116 KB |
Output is correct |
2 |
Correct |
54 ms |
14172 KB |
Output is correct |
3 |
Correct |
322 ms |
141392 KB |
Output is correct |
4 |
Correct |
94 ms |
33612 KB |
Output is correct |
5 |
Correct |
164 ms |
79680 KB |
Output is correct |
6 |
Correct |
814 ms |
155952 KB |
Output is correct |
7 |
Correct |
2 ms |
1116 KB |
Output is correct |
8 |
Correct |
2 ms |
1084 KB |
Output is correct |
9 |
Correct |
2 ms |
860 KB |
Output is correct |
10 |
Correct |
1 ms |
604 KB |
Output is correct |
11 |
Correct |
1 ms |
1096 KB |
Output is correct |
12 |
Correct |
1 ms |
604 KB |
Output is correct |
13 |
Correct |
45 ms |
14172 KB |
Output is correct |
14 |
Correct |
32 ms |
8284 KB |
Output is correct |
15 |
Correct |
22 ms |
9296 KB |
Output is correct |
16 |
Correct |
22 ms |
5976 KB |
Output is correct |
17 |
Correct |
138 ms |
36088 KB |
Output is correct |
18 |
Correct |
87 ms |
35664 KB |
Output is correct |
19 |
Correct |
108 ms |
33364 KB |
Output is correct |
20 |
Correct |
72 ms |
30740 KB |
Output is correct |
21 |
Correct |
192 ms |
82512 KB |
Output is correct |
22 |
Correct |
185 ms |
79696 KB |
Output is correct |
23 |
Correct |
276 ms |
68696 KB |
Output is correct |
24 |
Correct |
196 ms |
80692 KB |
Output is correct |
25 |
Correct |
378 ms |
141396 KB |
Output is correct |
26 |
Correct |
579 ms |
158816 KB |
Output is correct |
27 |
Correct |
723 ms |
184908 KB |
Output is correct |
28 |
Correct |
844 ms |
156088 KB |
Output is correct |
29 |
Correct |
827 ms |
153436 KB |
Output is correct |
30 |
Correct |
779 ms |
158920 KB |
Output is correct |
31 |
Correct |
557 ms |
91216 KB |
Output is correct |
32 |
Correct |
696 ms |
164612 KB |
Output is correct |