Submission #109024

# Submission time Handle Problem Language Result Execution time Memory
109024 2019-05-04T04:49:58 Z ryansee Circle selection (APIO18_circle_selection) C++14
7 / 100
3000 ms 62848 KB
#include "bits/stdc++.h"
using namespace std;
#define FAST ios_base::sync_with_stdio(false); cin.tie(0);
#define LLINF ((long long) 1e18)//1234567890987654321
#define INF 1234567890ll
#define pb push_back
#define ins insert
#define f first
#define s second	
#define db 0
#define EPS (1e-7)    //0.0000001 the value
#define PI (acos(-1))
#define MAXN (300006)
#define MAXK 26
#define MAXX 15000006
#define ll long long int 
#define ld long double
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());    //can be used by calling rng() or shuffle(A, A+n, rng)
#define FOR(ii, ss, ee) for(ll ii = ss; ii < ee; ++ii)
#define space " "
#define cbr cerr << "hi\n"
#define mmst(x, v) memset((x), v, sizeof ((x)))
#define siz(x) ((ll)x.size())
#define ph push
#define btinpct(x) __builtin_popcountll(x)
#define p2(x) (1LL<<(x))
#define all(x) (x).begin(), (x).end()
#define lbd(x, y) lower_bound(all(x), y)
#define ubd(x, y) upper_bound(all(x), y)
typedef pair <ll, ll> pi;
typedef pair <ll, pi> spi;
typedef pair <pi, pi> dpi;
inline ll rand(ll x, ll y) { ++y; return (rng() % (y-x)) + x; } //inclusivesss
ll n; bool s2 = 1;
pi A[MAXN], C[MAXN];
bool done[MAXN];
int ans[MAXN];
#define sq(x) ((x)*(x))
ld sqr(ll x) { return (x ? sqrtl(x) : 0); }
ld mdist(ll a, ll b, ll c, ll d) { return sqr( sq(llabs(a-c)) + sq(llabs(b-d)) ); }
string st1() {
	sort(A,A+n, [] (pi x, pi y) { if(x.f!=y.f) return x.f > y.f; else return x.s < y.s; } );
	FOR(ii,0,n) {
		ll i = A[ii].s;
		ll r = A[ii].f; 
		if(done[i]) continue;
		ans[i] = i;
		FOR(j,ii+1,n) {
			if(!done[A[j].s] && mdist(C[i].f,C[i].s,C[A[j].s].f,C[A[j].s].s) <= (ld)r + (ld)A[j].f) {
				done[A[j].s] = 1;
				ans[A[j].s] = i;
			}
		}
	}
	FOR(i,0,n) cout << ans[i] + 1 << ' '; cout << '\n';
	string s = ""; FOR(i,0,n) s += to_string(ans[i]+1); return s;
}
string st2() {
	sort(A,A+n, [] (pi x, pi y) { if(x.f!=y.f) return x.f > y.f; else return x.s < y.s; } );
	mmst(ans,0);
	multiset <pi> ms_smol,ms_big; // x-coord, radius, index
	FOR(i,0,n) {
		ms_smol.ins(pi(C[A[i].s].f+A[i].f, i));
		ms_big.ins(pi(C[A[i].s].f-A[i].f, i));
	}
	FOR(i,0,n) {
		if(ms_smol.find(pi(C[A[i].s].f+A[i].f, i)) == ms_smol.end()) { continue; }
		while(1) {
			auto itrrr = ms_big.find(pi(C[A[i].s].f-A[i].f, i));
			auto itr2 = next(itrrr);
			if(itr2==ms_big.end()) break;
			if(C[A[i].s].f + A[i].f >= itr2->f) { ans[A[itr2->s].s] = A[i].s; ms_smol.erase(ms_smol.find(pi(C[A[itr2->s].s].f+A[itr2->s].f, itr2->s))); ms_big.erase(itr2); }
			else break;
		}
		while(1) {
			auto itrrr = ms_smol.find(pi(C[A[i].s].f+A[i].f, i)); if(itrrr==ms_smol.begin()) break;
			auto itr2 = prev(itrrr);
			if(C[A[i].s].f - A[i].f <= itr2->f) { ans[A[itr2->s].s] = A[i].s; ms_smol.erase(itr2); ms_big.erase(ms_big.find(pi(C[A[itr2->s].s].f-A[itr2->s].f, itr2->s))); }
			else break;
		}
		ms_smol.erase(ms_smol.find(pi(C[A[i].s].f+A[i].f,i)));
		ms_big.erase(ms_big.find(pi(C[A[i].s].f-A[i].f,i)));
		ans[A[i].s] = A[i].s;
	}
	FOR(i,0,n) cout << ans[i]+1 << ' '; cout << '\n';
	string s = ""; FOR(i,0,n) s += to_string(ans[i]+1); return s;
}
// ll mdist(ll a, ll b, ll c, ll d) { return llabs(a-c)+llabs(b-d); }
void st3() {
	vector<ll>inter(n,0); vector<bool>re(n,0); set <pi> ms;
	vector <pi> events;
	FOR(i,0,n) events.pb(pi(C[i].s-A[i].f,i)), events.pb(pi(C[i].s+A[i].f,-i-1));
	sort(all(events), [] (pi x, pi y) { if(x.f != y.f) return x.f < y.f; else return x.s > y.s; } );
	for(auto j : events) {
		ll i = j.s;
		if(i>=0) { ll r = A[i].f; ll x = C[i].f;
			bool in = 1; pi near = pi(LLINF, LLINF);
			if(!ms.empty()) {
				// pi near = LLINF;
				auto itr = ms.lower_bound(pi(x,0));
				if(itr != ms.end()) near = min(near, pi(mdist(C[itr->s].f,C[itr->s].s, C[i].f, C[i].s)-(ld)A[itr->s].f, itr->s));
				if(itr != ms.begin()) { --itr; near = min(near, pi(mdist(C[itr->s].f,C[itr->s].s, C[i].f, C[i].s)-(ld)A[itr->s].f, itr->s)); }
			    assert(near.f != LLINF); 
				if(near.f-EPS <= (ld)r) in = 0;
			}
			if(in) {
				ms.ins(pi(x,i)); re[i] = 1;
			} else {
				re[i] = 0; assert(re[near.s]);
				assert((ms.find(pi(C[near.s].f, near.s))!=ms.end()));
				// assert(ms.find(pi(C[near.s].f+A[near.s].f, near.s))!=ms.end());
				ms.erase(ms.find(pi(C[near.s].f, near.s)));
				// ms.erase(ms.find(pi(C[near.s].f+A[near.s].f, near.s)));
				re[near.s] = 0;
				inter[i] = near.s;
				inter[near.s] = i;
			}
		} else {
			i = -i-1; if(re[i] == 0) continue;
			ll r = A[i].f; ll x = C[i].f;
			ms.erase(ms.find(pi(x,i)));
//  			bool in = 1; pi near = pi(LLINF, LLINF);
// 			if(!ms.empty()) {
// 				// pi near = LLINF;
// 				auto itr = ms.lower_bound(pi(x,0));
// 				if(itr != ms.end()) near = min(near, pi(mdist(C[itr->s].f,C[itr->s].s, C[i].f, C[i].s)-(ld)A[itr->s].f, itr->s));
// 				if(itr != ms.begin()) { --itr; near = min(near, pi(mdist(C[itr->s].f,C[itr->s].s, C[i].f, C[i].s)-(ld)A[itr->s].f, itr->s)); }
// 			    assert(near.f != LLINF); 
// 				if(near.f-EPS <= (ld)r) in = 0;
// 			}
// 			if(!in) {
// 				re[i] = 0; assert(re[near.s]);
// 				assert((ms.find(pi(C[near.s].f, near.s))!=ms.end()));
// 				// assert(ms.find(pi(C[near.s].f+A[near.s].f, near.s))!=ms.end());
// 				ms.erase(ms.find(pi(C[near.s].f, near.s)));
// 				// ms.erase(ms.find(pi(C[near.s].f+A[near.s].f, near.s)));
// 				re[near.s] = 0;
// 				inter[i] = near.s;
// 				inter[near.s] = i;
// 			}
            auto itr = ms.lower_bound(pi(x,0));
            if(itr != ms.end()) assert(itr->f > x);
            if(itr != ms.begin() && itr != ms.end()) {
                ll a = prev(itr)->s, b = itr->s;
                if(mdist(C[a].f,C[a].s,C[b].f,C[b].s) <= (ld)A[a].f + (ld)A[b].f){
                    re[a] = re[b] = 0;
                    inter[a] = b;
                    inter[b] = a;
                    itr=ms.erase(prev(itr));
                    ms.erase(itr);
                }
            }
		}
	}
	FOR(i,0,n) ans[i] = i;
	FOR(i,0,n) if(!re[i]&&(A[inter[i]].f>A[i].f||(A[inter[i]].f==A[i].f&&inter[i]<i))) { ans[i] = inter[i]; } 
	FOR(i,0,n) cout << ans[i]+1 << ' '; cout<<'\n';
}
vector<pi>in;
bool s4 = 1; ll R = -1;

ll magic = 5; // odd number pls
bool inter(ll i, ll j) {
	if(done[j]) return 1;
	if(mdist(C[i].f, C[i].s, C[j].f, C[j].s) <= (ld)A[i].f + (ld) A[j].f) {
// 		assert(i < j);
		done[j] = 1;
		ans[j] = i;
		return 1;
	}
	else return 0;
}
unordered_map <ll, int> mp;
vector <ll> d;
set<pi>ind[MAXN];
void split() {
	mp.clear();
	FOR(i,0,MAXN) ind[i].clear();
	d.clear();
	R /= 2;
	FOR(i,0,n) d.pb(C[i].f/R);
	// sort(all(d));
	// d.resize(unique(all(d))-d.begin());
	ll co = 1;
	for(auto i : d) mp[i] = co ++;
	FOR(i,0,n) ind[mp[C[i].f/R]].ins(pi(C[i].s, i));
	return;
}
void st4() {
	FOR(i,0,n) {
		d.pb(C[i].f/R);
	}
	sort(all(d)); d.resize(unique(all(d))-d.begin());
	ll co = 1; for(auto i : d) mp[i] = co++; 
	FOR(i,0,n) {
		ind[mp[C[i].f/R]].ins(pi(C[i].s,i));
	}
	int p[n+5];
	for(ll i=0;i<n;i++) p[i]=i;
	sort(p,p+n,[](ll x, ll y){if(A[x].f==A[y].f)return A[x].s<A[y].s; else return A[x].f>A[y].f;});
// 	assert(ind[0].empty());
	FOR(iii,0,n) {
		ll i = p[iii]; // cerr << i+1 << ' ';
		if(done[i]) continue;
		done[i] = 1;
		ans[i] = i; if(A[i].f < R/2) { split(); }
		ll x = mp[C[i].f/R], y = C[i].s;
		ind[x].erase(ind[x].find(pi(y,i)));
		ll ii = i;
		FOR(i,x-magic/2,x+magic/2+1) {
			if(i <= 0 || i > siz(d) )continue;
// 			ll d = llabs(x-i) * R + R;
// 			auto lower = ind[i].lower_bound(pi(sqr((4ll*sq(R))-sq(d))-y, 0));
// 			auto upper = (ind[i].upper_bound(pi(sqr((4ll*sq(R))-sq(d))+y, LLINF)));
// 			if(upper != ind[i].end() && pi(lower->f,lower->s) > pi(upper->f,upper->s)) continue;
// 			if(lower == ind[i].end()) continue;
			for(auto j = ind[i].begin(); j != ind[i].end();) {
				if(inter(ii,j->s)) { j=ind[i].erase(j); }
				else ++j;
			}
		}
	}
	FOR(i,0,n) assert(done[i]);
	FOR(i,0,n) cout << ans[i] + 1 << ' ';
}
int main()
{
	// freopen("int","r",stdin); freopen("out","w",stdout);
	FAST
	cin >> n;
	FOR(i,0,n) {
		cin >> C[i].f >> C[i].s >> A[i].f; if(0)in.pb(pi(C[i].f,A[i].f));
		if(C[i].s) s2 = 0;
		A[i].s = i;
		if(R == -1) R = A[i].f;
		if(R != A[i].f) s4 = 0;
		R=max(R,A[i].f);
	}
	// if(st1() != st2()) {
		
		// cerr << n << '\n';
		// for(auto i : in) cerr << i.f << ' ' << i.s << '\n';
		// assert(0);
	// }
	// assert(st1() == st2());
	if(n <= 5000&&0) {
		st1();
	} else if(s2&&0) {
		st2();
	} else if(s4||1) { // becos i edited editorial solution here (the AC solution)
		st4();
	}else { 
		st3();
	}
}
// 1 10 1 4 5 6 7 8 4 10 6
// 1 2 1 4 5 6 7 8 4 2 6
/*


3
5 0 3
10 0 2
20 0 8

4
1 0 3
10 0 5
15 0 1
20 0 10


8
1 4
14 12
6 10
0 6
14 0
9 6
3 2
0 0
* 
11
9 9 2
13 2 1
11 8 2
3 3 2
3 12 1
12 14 1
9 8 5
2 8 2
5 2 1
14 4 2
14 14 1
*/

Compilation message

circle_selection.cpp: In function 'std::__cxx11::string st1()':
circle_selection.cpp:19:25: warning: this 'for' clause does not guard... [-Wmisleading-indentation]
 #define FOR(ii, ss, ee) for(ll ii = ss; ii < ee; ++ii)
                         ^
circle_selection.cpp:55:2: note: in expansion of macro 'FOR'
  FOR(i,0,n) cout << ans[i] + 1 << ' '; cout << '\n';
  ^~~
circle_selection.cpp:55:40: note: ...this statement, but the latter is misleadingly indented as if it were guarded by the 'for'
  FOR(i,0,n) cout << ans[i] + 1 << ' '; cout << '\n';
                                        ^~~~
circle_selection.cpp: In function 'std::__cxx11::string st2()':
circle_selection.cpp:19:25: warning: this 'for' clause does not guard... [-Wmisleading-indentation]
 #define FOR(ii, ss, ee) for(ll ii = ss; ii < ee; ++ii)
                         ^
circle_selection.cpp:85:2: note: in expansion of macro 'FOR'
  FOR(i,0,n) cout << ans[i]+1 << ' '; cout << '\n';
  ^~~
circle_selection.cpp:85:38: note: ...this statement, but the latter is misleadingly indented as if it were guarded by the 'for'
  FOR(i,0,n) cout << ans[i]+1 << ' '; cout << '\n';
                                      ^~~~
circle_selection.cpp: In function 'void st3()':
circle_selection.cpp:120:7: warning: unused variable 'r' [-Wunused-variable]
    ll r = A[i].f; ll x = C[i].f;
       ^
circle_selection.cpp:19:25: warning: this 'for' clause does not guard... [-Wmisleading-indentation]
 #define FOR(ii, ss, ee) for(ll ii = ss; ii < ee; ++ii)
                         ^
circle_selection.cpp:157:2: note: in expansion of macro 'FOR'
  FOR(i,0,n) cout << ans[i]+1 << ' '; cout<<'\n';
  ^~~
circle_selection.cpp:157:38: note: ...this statement, but the latter is misleadingly indented as if it were guarded by the 'for'
  FOR(i,0,n) cout << ans[i]+1 << ' '; cout<<'\n';
                                      ^~~~
# Verdict Execution time Memory Grader output
1 Correct 18 ms 14464 KB Output is correct
2 Correct 15 ms 14464 KB Output is correct
3 Correct 18 ms 14464 KB Output is correct
4 Correct 20 ms 14464 KB Output is correct
5 Correct 17 ms 14456 KB Output is correct
6 Correct 17 ms 14464 KB Output is correct
7 Correct 18 ms 14592 KB Output is correct
8 Correct 15 ms 14464 KB Output is correct
9 Correct 21 ms 14464 KB Output is correct
10 Correct 18 ms 14464 KB Output is correct
11 Correct 26 ms 14464 KB Output is correct
12 Correct 32 ms 14436 KB Output is correct
13 Correct 28 ms 14464 KB Output is correct
14 Correct 31 ms 14464 KB Output is correct
15 Correct 31 ms 14524 KB Output is correct
16 Correct 33 ms 14584 KB Output is correct
17 Correct 18 ms 14592 KB Output is correct
18 Correct 18 ms 14584 KB Output is correct
19 Correct 24 ms 15232 KB Output is correct
20 Correct 21 ms 15232 KB Output is correct
21 Correct 39 ms 15224 KB Output is correct
22 Correct 73 ms 15356 KB Output is correct
23 Correct 71 ms 15352 KB Output is correct
24 Correct 80 ms 15424 KB Output is correct
25 Correct 55 ms 15312 KB Output is correct
26 Correct 74 ms 15448 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 537 ms 49780 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 29 ms 14464 KB Output is correct
2 Incorrect 2419 ms 30324 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1336 ms 53196 KB Output is correct
2 Correct 977 ms 62848 KB Output is correct
3 Execution timed out 3029 ms 47840 KB Time limit exceeded
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 18 ms 14464 KB Output is correct
2 Correct 15 ms 14464 KB Output is correct
3 Correct 18 ms 14464 KB Output is correct
4 Correct 20 ms 14464 KB Output is correct
5 Correct 17 ms 14456 KB Output is correct
6 Correct 17 ms 14464 KB Output is correct
7 Correct 18 ms 14592 KB Output is correct
8 Correct 15 ms 14464 KB Output is correct
9 Correct 21 ms 14464 KB Output is correct
10 Correct 18 ms 14464 KB Output is correct
11 Correct 26 ms 14464 KB Output is correct
12 Correct 32 ms 14436 KB Output is correct
13 Correct 28 ms 14464 KB Output is correct
14 Correct 31 ms 14464 KB Output is correct
15 Correct 31 ms 14524 KB Output is correct
16 Correct 33 ms 14584 KB Output is correct
17 Correct 18 ms 14592 KB Output is correct
18 Correct 18 ms 14584 KB Output is correct
19 Correct 24 ms 15232 KB Output is correct
20 Correct 21 ms 15232 KB Output is correct
21 Correct 39 ms 15224 KB Output is correct
22 Correct 73 ms 15356 KB Output is correct
23 Correct 71 ms 15352 KB Output is correct
24 Correct 80 ms 15424 KB Output is correct
25 Correct 55 ms 15312 KB Output is correct
26 Correct 74 ms 15448 KB Output is correct
27 Incorrect 75 ms 15728 KB Output isn't correct
28 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 18 ms 14464 KB Output is correct
2 Correct 15 ms 14464 KB Output is correct
3 Correct 18 ms 14464 KB Output is correct
4 Correct 20 ms 14464 KB Output is correct
5 Correct 17 ms 14456 KB Output is correct
6 Correct 17 ms 14464 KB Output is correct
7 Correct 18 ms 14592 KB Output is correct
8 Correct 15 ms 14464 KB Output is correct
9 Correct 21 ms 14464 KB Output is correct
10 Correct 18 ms 14464 KB Output is correct
11 Correct 26 ms 14464 KB Output is correct
12 Correct 32 ms 14436 KB Output is correct
13 Correct 28 ms 14464 KB Output is correct
14 Correct 31 ms 14464 KB Output is correct
15 Correct 31 ms 14524 KB Output is correct
16 Correct 33 ms 14584 KB Output is correct
17 Correct 18 ms 14592 KB Output is correct
18 Correct 18 ms 14584 KB Output is correct
19 Correct 24 ms 15232 KB Output is correct
20 Correct 21 ms 15232 KB Output is correct
21 Correct 39 ms 15224 KB Output is correct
22 Correct 73 ms 15356 KB Output is correct
23 Correct 71 ms 15352 KB Output is correct
24 Correct 80 ms 15424 KB Output is correct
25 Correct 55 ms 15312 KB Output is correct
26 Correct 74 ms 15448 KB Output is correct
27 Incorrect 537 ms 49780 KB Output isn't correct
28 Halted 0 ms 0 KB -