Submission #1087763

#TimeUsernameProblemLanguageResultExecution timeMemory
1087763xnqsSegments (IZhO18_segments)C++17
7 / 100
634 ms65536 KiB
// not enough memory for this, but oh well idfc its probably the most efficient solution time-wise // i dont like batching so i will do this instead #include <iostream> #include <fstream> #include <vector> #include <queue> #include <utility> #include <algorithm> #include <map> #include <random> std::mt19937 rng(53); template<typename Type> class FenwickTree { private: std::vector<Type> bit; public: FenwickTree(int size = 0, Type val = 0) { assign(size,val); } void assign(int size = 0, Type val = 0) { bit.assign(size,0); if (size&&val) { for (int i = 1; i < size; i++) { bit[i] += val; if (i+(i&-i)<bit.size()) { bit[i+(i&-i)] += bit[i]; } } } } void add(int poz, Type val) { while (poz<bit.size()) { bit[poz] += val; poz += poz&-poz; } } Type query(int poz) { Type ret = 0; while (poz>0) { ret += bit[poz]; poz ^= poz&-poz; } return ret; } Type query(int l, int r) { return query(r) - query(l-1); } int binary_lifting(Type val) { int ret = 0; for (int step = 1<<18; step; step >>= 1) { if (ret+step<bit.size()&&val-bit[ret+step]>0) { val -= bit[ret+step]; ret += step; } } return ++ret; } }; namespace Treap { struct Node { int val; int size; int prio; Node* l; Node* r; Node(int val = 0): val(val), size(1), prio(rng()), l(nullptr), r(nullptr) {} ~Node() { if (l) delete l; if (r) delete r; } }; Node* _aux_merge = nullptr; Node* _aux_split_l = nullptr; Node* _aux_split_r = nullptr; inline int NodeGetSize(Node* node) { if (!node) return 0; return node->size; } inline void NodeUpdateSize(Node* node) { if (!node) return; node->size = 1 + NodeGetSize(node->l) + NodeGetSize(node->r); } void SplitDriver(Node* node, int key) { if (!node) { _aux_split_l = _aux_split_r = nullptr; return; } if (key<=NodeGetSize(node->l)) { SplitDriver(node->l,key); node->l = _aux_split_r; _aux_split_r = node; NodeUpdateSize(node); } else { SplitDriver(node->r,key-NodeGetSize(node->l)-1); node->r = _aux_split_l; _aux_split_l = node; NodeUpdateSize(node); } } std::pair<Node*, Node*> Split(Node* node, int key) { SplitDriver(node,key); return {_aux_split_l, _aux_split_r}; } void MergeDriver(Node* a, Node* b) { if (!a) { _aux_merge = b; return; } if (!b) { _aux_merge = a; return; } if (a->prio > b->prio) { MergeDriver(a->r,b); a->r = _aux_merge; _aux_merge = a; NodeUpdateSize(a); } else { MergeDriver(a,b->l); b->l = _aux_merge; _aux_merge = b; NodeUpdateSize(b); } } Node* Merge(Node* a, Node* b) { MergeDriver(a,b); return _aux_merge; } Node* Insert(Node*& root, int pos, int val) { auto trees = Split(root, pos); return root = Merge(Merge(trees.first, new Node(val)), trees.second); } Node* Remove(Node*& root, int pos) { auto trees = Split(root,pos); auto trees_right = Split(trees.second,1); delete trees_right.first; return root = Merge(trees.first,trees_right.second); } int GetVal(Node* root, int pos, int skipped = 0) { auto trees = Treap::Split(root,pos); auto trees_right = Treap::Split(trees.second,1); int ret = trees_right.first->val; trees.second = Treap::Merge(trees_right.first,trees_right.second); root = Treap::Merge(trees.first,trees.second); return ret; } int LowerBound(Node* node, int val, int skipped = 0, int base_size = 0) { if (!node) return base_size; int node_key = NodeGetSize(node->l) + skipped; int new_base_size = ((base_size) ? base_size : NodeGetSize(node)); if (node->val>=val) { return std::min(node_key, LowerBound(node->l,val,skipped,new_base_size)); } else { return LowerBound(node->r,val,node_key+1,new_base_size); } } int UpperBound(Node* node, int val, int skipped = 0, int base_size = 0) { if (!node) return base_size; int node_key = NodeGetSize(node->l) + skipped; int new_base_size = ((base_size) ? base_size : NodeGetSize(node)); if (node->val>val) { return std::min(node_key, UpperBound(node->l,val,skipped,new_base_size)); } else { return UpperBound(node->r,val,node_key+1,new_base_size); } } void Inorder(Node* node, int depth = 0) { if (!node) { return; } Inorder(node->l,depth+1); std::cout << node->val << " "; Inorder(node->r,depth+1); if (!depth) { std::cout << "\n"; } } }; // namespace Treap class SetBootleg { private: Treap::Node* root = nullptr; void Print(Treap::Node* node, int depth = 0) { if (!node) { return; } Print(node->l,depth+1); std::cout << node->val << " "; Print(node->r,depth+1); if (!depth) { std::cout << "\n"; } } public: void Insert(int val) { if (!root) { root = new Treap::Node(val); return; } int pos = Treap::LowerBound(root,val); Treap::Insert(root,pos,val); } void Remove(int val) { if (!root) { return; } int pos = Treap::LowerBound(root,val); if (Treap::GetVal(root,pos)!=val) { return; } Treap::Remove(root,pos); } int LowerBound(int val) { return Treap::LowerBound(root,val); } int UpperBound(int val) { return Treap::UpperBound(root,val); } int Size() { return Treap::NodeGetSize(root); } void Print() { Print(root); } }; // class SetBootleg struct SegTreeNode { SetBootleg set; SegTreeNode* l = nullptr; SegTreeNode* r = nullptr; }; int q, t; FenwickTree<int> fnwk(200005,1); SegTreeNode* mst1 = new SegTreeNode; // keeps length of segment in l, so if arr[l] = val, the segment is [l, l+val-1] SegTreeNode* mst2 = new SegTreeNode; // keeps right side of segment in l std::pair<int,int> seg[200005]; std::map<std::pair<int,int>,int> map; void insert(SegTreeNode* node, uint32_t l, uint32_t r, uint32_t pos, int val) { node->set.Insert(val); if (l==r) { return; } auto m = (l+r)/2; if (pos<=m) { if (!node->l) node->l = new SegTreeNode; insert(node->l,l,m,pos,val); } else { if (!node->r) node->r = new SegTreeNode; insert(node->r,m+1,r,pos,val); } } void remove(SegTreeNode* node, uint32_t l, uint32_t r, uint32_t pos, int val) { if (!node) { return; } node->set.Remove(val); if (l==r) { return; } auto m = (l+r)/2; if (pos<=m) { remove(node->l,l,m,pos,val); } else { remove(node->r,m+1,r,pos,val); } } int query_gteq(SegTreeNode* node, uint32_t l, uint32_t r, uint32_t st, uint32_t fi, int val) { if (!node) { return 0; } if (l>fi||r<st) { return 0; } if (st<=l&&r<=fi) { return node->set.Size() - node->set.LowerBound(val); } auto m = (l+r)/2; return query_gteq(node->l,l,m,st,fi,val) + query_gteq(node->r,m+1,r,st,fi,val); } int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); std::cout.tie(NULL); std::cin >> q >> t; int last_ans = 0; int cnt = 0; while (q--) { int op; std::cin >> op; if (op==1) { int a, b; std::cin >> a >> b; int l = a^(t*last_ans); int r = b^(t*last_ans); if (l>r) std::swap(l,r); ++cnt; seg[cnt] = std::pair<int,int>(l,r); insert(mst1,0,2000000000,l,r-l+1); insert(mst2,0,2000000000,l,r); } else if (op==2) { int idx; std::cin >> idx; auto [l, r] = seg[idx]; remove(mst1,0,2000000000,l,r-l+1); remove(mst2,0,2000000000,l,r); } else { int a, b, k; std::cin >> a >> b >> k; int l = a^(t*last_ans); int r = b^(t*last_ans); if (l>r) std::swap(l,r); int ret = query_gteq(mst1,0,2000000000,l,r-k+1,k); if (l>0) { ret += query_gteq(mst2,0,2000000000,0,l-1,l+k-1); } last_ans = ret; std::cout << ret << "\n"; } } }

Compilation message (stderr)

segments.cpp: In instantiation of 'void FenwickTree<Type>::assign(int, Type) [with Type = int]':
segments.cpp:21:3:   required from 'FenwickTree<Type>::FenwickTree(int, Type) [with Type = int]'
segments.cpp:276:31:   required from here
segments.cpp:28:17: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int, std::allocator<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   28 |     if (i+(i&-i)<bit.size()) {
      |         ~~~~~~~~^~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...