Submission #1085398

# Submission time Handle Problem Language Result Execution time Memory
1085398 2024-09-08T07:53:52 Z vladilius Meetings (IOI18_meetings) C++17
100 / 100
3646 ms 634516 KB
#include <bits/stdc++.h>
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
using namespace std;
using ll = long long;
using pii = pair<int, int>;
#define pb push_back
#define ff first
#define ss second
#define ins insert
#define arr3 array<int, 3>
const ll inf = 1e18;

struct LCT{
    struct line{
        int k; ll b;
        ll operator ()(int x){
            return 1LL * k * x + b;
        }
    };
    vector<line> t;
    vector<ll> p;
    int n;
    LCT(int ns){
        n = ns;
        t.assign(4 * n, {0, inf});
        p.resize(4 * n);
    }
    void apply(int v, ll& x){
        t[v].b += x; p[v] += x;
    }
    void push1(int& v){
        if (!p[v]) return;
        int vv = 2 * v;
        apply(vv, p[v]);
        apply(vv + 1, p[v]);
        p[v] = 0;
    }
    void add(int v, int tl, int tr, int& l, int& r, ll& x){
        if (l > tr || r < tl) return;
        if (l <= tl && tr <= r){
            apply(v, x);
            return;
        }
        int tm = (tl + tr) / 2, vv = 2 * v;
        push1(v);
        add(vv, tl, tm, l, r, x);
        add(vv + 1, tm + 1, tr, l, r, x);
    }
    void add(int l, int r, ll x){
        if (l > r) return;
        add(1, 1, n, l, r, x);
    }
    void insert(int v, int tl, int tr, line f){
        if (tl == tr){
            if (t[v](tl) > f(tl)) t[v] = f;
            return;
        }
        int tm = (tl + tr) / 2, vv = 2 * v;
        push1(v);
        if (t[v].k > f.k) swap(t[v], f);
        if (t[v](tm) > f(tm)){
            swap(t[v], f);
            insert(vv + 1, tm + 1, tr, f);
        }
        else {
            insert(vv, tl, tm, f);
        }
    }
    void chmin(int v, int tl, int tr, int& l, int& r, line& f){
        if (l > tr || r < tl) return;
        if (l <= tl && tr <= r){
            insert(v, tl, tr, f);
            return;
        }
        int tm = (tl + tr) / 2, vv = 2 * v;
        push1(v);
        chmin(vv, tl, tm, l, r, f);
        chmin(vv + 1, tm + 1, tr, l, r, f);
    }
    void chmin(int l, int r, int k, ll b){
        if (l > r) return;
        line f = {k, b};
        chmin(1, 1, n, l, r, f);
    }
    ll get(int v, int tl, int tr, int& x){
        if (tl == tr) return t[v](x);
        int tm = (tl + tr) / 2, vv = 2 * v;
        push1(v);
        if (x <= tm){
            return min(t[v](x), get(vv, tl, tm, x));
        }
        return min(t[v](x), get(vv + 1, tm + 1, tr, x));
    }
    ll get(int x){
        return get(1, 1, n, x);
    }
};

vector<ll> minimum_costs(vector<int> H, vector<int> L, vector<int> R){
    int n = (int) H.size(), q = (int) L.size();
    vector<int> h(n + 1);
    for (int i = 1; i <= n; i++){
        h[i] = H[i - 1];
    }
    
    L.insert(L.begin(), 0); R.insert(R.begin(), 0);
    
    vector<int> log(n + 1);
    for (int i = 2; i <= n; i++) log[i] = log[i / 2] + 1;
    const int lg = log[n];
    vector<vector<pii>> sp(n + 1, vector<pii>(lg + 1));
    for (int i = 1; i <= n; i++) sp[i][0] = {h[i], i};
    for (int j = 1; j <= lg; j++){
        for (int i = 1; i + (1 << j) <= n + 1; i++){
            sp[i][j] = max(sp[i][j - 1], sp[i + (1 << (j - 1))][j - 1]);
        }
    }
    
    auto get = [&](int l, int r){
        int k = log[r - l + 1];
        return max(sp[l][k], sp[r - (1 << k) + 1][k]);
    };
    
    vector<int> g[n + 1], nd(n + 1);
    int cc = 0;
    
    function<int(int, int)> build1 = [&](int l, int r){
        int p = get(l, r).ss, x = -1, y = -1;
        
        if (p != l) x = build1(l, p - 1);
        if (p != r) y = build1(p + 1, r);
        
        nd[p] = ++cc;
        
        if (x != -1) g[cc].pb(x);
        if (y != -1) g[cc].pb(y);
        
        return cc;
    };
    build1(1, n);
    
    vector<vector<int>> pw(n + 1, vector<int>(lg + 1));
    vector<int> tin(n + 1), tout(n + 1);
    int timer = 0;
    function<void(int, int)> fill = [&](int v, int pr){
        tin[v] = ++timer;
        pw[v][0] = pr;
        for (int i = 1; i <= lg; i++){
            pw[v][i] = pw[pw[v][i - 1]][i - 1];
        }
        for (int i: g[v]){
            fill(i, v);
        }
        tout[v] = timer;
    };
    fill(n, n);
    
    auto check = [&](int x, int y){
        return (tin[x] <= tin[y] && tout[x] >= tout[y]);
    };
    
    auto lca = [&](int x, int y){
        if (check(x, y)) return x;
        if (check(y, x)) return y;
        for (int i = lg; i >= 0; i--){
            if (!check(pw[x][i], y)){
                x = pw[x][i];
            }
        }
        return pw[x][0];
    };
    
    vector<int> qs[n + 1];
    for (int i = 1; i <= q; i++){
        L[i]++; R[i]++;
        qs[lca(nd[L[i]], nd[R[i]])].pb(i);
    }
    
    vector<ll> out(q + 1, inf); cc = 0;
    LCT T1(n), T2(n);
    
    for (int i = 1; i <= n; i++){
        T1.add(i, i, -inf);
        T2.add(i, i, -inf);
    }
    
    function<void(int, int)> build = [&](int l, int r){
        auto [m, p] = get(l, r);
        
        if (l != p) build(l, p - 1);
        if (r != p) build(p + 1, r);
        
        for (int i: qs[++cc]){
            out[i] = min(out[i], T2.get(L[i]) + 1LL * m * (R[i] - p + 1));
            out[i] = min(out[i], T1.get(R[i]) + 1LL * m * (p - L[i] + 1));
        }
        
        // T2[i]' = min(T2[i] + m * (r - p + 1), T2[p + 1] + m * (p - i + 1)); (l <= i < p)
        T2.add(l, p, 1LL * m * (r - p + 1));
        if (r != p) T2.chmin(l, p, -m, T2.get(p + 1) + 1LL * m * (p + 1));

        // T1[i]' = min(T1[i] + m * (p - l + 1), T1[p - 1] + m * (i - p + 1)); (p < i <= r)
        T1.add(p, r, 1LL * m * (p - l + 1));
        if (l != p) T1.chmin(p, r, m, T1.get(p - 1) - 1LL * m * (p - 1));
    };
    build(1, n);
    
    
    vector<ll> ret;
    for (int i = 1; i <= q; i++) ret.pb(out[i]);
    return ret;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 3 ms 1884 KB Output is correct
3 Correct 4 ms 1884 KB Output is correct
4 Correct 3 ms 1912 KB Output is correct
5 Correct 3 ms 1884 KB Output is correct
6 Correct 5 ms 2140 KB Output is correct
7 Correct 5 ms 1884 KB Output is correct
8 Correct 3 ms 2140 KB Output is correct
9 Correct 3 ms 2140 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 3 ms 1884 KB Output is correct
3 Correct 4 ms 1884 KB Output is correct
4 Correct 3 ms 1912 KB Output is correct
5 Correct 3 ms 1884 KB Output is correct
6 Correct 5 ms 2140 KB Output is correct
7 Correct 5 ms 1884 KB Output is correct
8 Correct 3 ms 2140 KB Output is correct
9 Correct 3 ms 2140 KB Output is correct
10 Correct 8 ms 3164 KB Output is correct
11 Correct 8 ms 3164 KB Output is correct
12 Correct 7 ms 3164 KB Output is correct
13 Correct 8 ms 3164 KB Output is correct
14 Correct 9 ms 3676 KB Output is correct
15 Correct 7 ms 3164 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 34 ms 7764 KB Output is correct
3 Correct 233 ms 70552 KB Output is correct
4 Correct 183 ms 63044 KB Output is correct
5 Correct 197 ms 72460 KB Output is correct
6 Correct 184 ms 73792 KB Output is correct
7 Correct 187 ms 75448 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 34 ms 7764 KB Output is correct
3 Correct 233 ms 70552 KB Output is correct
4 Correct 183 ms 63044 KB Output is correct
5 Correct 197 ms 72460 KB Output is correct
6 Correct 184 ms 73792 KB Output is correct
7 Correct 187 ms 75448 KB Output is correct
8 Correct 204 ms 62580 KB Output is correct
9 Correct 166 ms 62528 KB Output is correct
10 Correct 184 ms 62528 KB Output is correct
11 Correct 184 ms 61764 KB Output is correct
12 Correct 169 ms 61764 KB Output is correct
13 Correct 195 ms 62016 KB Output is correct
14 Correct 240 ms 69700 KB Output is correct
15 Correct 178 ms 61248 KB Output is correct
16 Correct 180 ms 71488 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 3 ms 1884 KB Output is correct
3 Correct 4 ms 1884 KB Output is correct
4 Correct 3 ms 1912 KB Output is correct
5 Correct 3 ms 1884 KB Output is correct
6 Correct 5 ms 2140 KB Output is correct
7 Correct 5 ms 1884 KB Output is correct
8 Correct 3 ms 2140 KB Output is correct
9 Correct 3 ms 2140 KB Output is correct
10 Correct 8 ms 3164 KB Output is correct
11 Correct 8 ms 3164 KB Output is correct
12 Correct 7 ms 3164 KB Output is correct
13 Correct 8 ms 3164 KB Output is correct
14 Correct 9 ms 3676 KB Output is correct
15 Correct 7 ms 3164 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 34 ms 7764 KB Output is correct
18 Correct 233 ms 70552 KB Output is correct
19 Correct 183 ms 63044 KB Output is correct
20 Correct 197 ms 72460 KB Output is correct
21 Correct 184 ms 73792 KB Output is correct
22 Correct 187 ms 75448 KB Output is correct
23 Correct 204 ms 62580 KB Output is correct
24 Correct 166 ms 62528 KB Output is correct
25 Correct 184 ms 62528 KB Output is correct
26 Correct 184 ms 61764 KB Output is correct
27 Correct 169 ms 61764 KB Output is correct
28 Correct 195 ms 62016 KB Output is correct
29 Correct 240 ms 69700 KB Output is correct
30 Correct 178 ms 61248 KB Output is correct
31 Correct 180 ms 71488 KB Output is correct
32 Correct 1865 ms 499872 KB Output is correct
33 Correct 1412 ms 498600 KB Output is correct
34 Correct 1706 ms 500836 KB Output is correct
35 Correct 2137 ms 500608 KB Output is correct
36 Correct 1435 ms 499556 KB Output is correct
37 Correct 1936 ms 501268 KB Output is correct
38 Correct 3198 ms 560288 KB Output is correct
39 Correct 3439 ms 560328 KB Output is correct
40 Correct 2174 ms 513716 KB Output is correct
41 Correct 1791 ms 633444 KB Output is correct
42 Correct 1997 ms 634516 KB Output is correct
43 Correct 1958 ms 634396 KB Output is correct
44 Correct 3646 ms 560072 KB Output is correct