Submission #1083982

# Submission time Handle Problem Language Result Execution time Memory
1083982 2024-09-04T18:00:30 Z SamueleVid Catfish Farm (IOI22_fish) C++17
53 / 100
1000 ms 2097152 KB
#include <bits/stdc++.h>
using namespace std;
#define ll long long

constexpr int MAXN = 1e5 + 5;
constexpr int PW = 512;

ll sum_tutto(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    ll sum = 0;
    for (auto x : W) sum += x;
    return sum;
}

ll res_minore_di_due(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    if (N == 2) {
        // massimo tra 0 e 1    
        ll one = 0;
        ll zero = 0;
        for (int i = 0; i < M; i ++) {
            if (X[i] == 0) zero += W[i];
            else one += W[i];
        }

        return max(one, zero);
    }

    // altrimenti piazza una riga in 2 e poi prendi prefisso maggiore piazzando in 1
    
    ll sum = 0;
    for (int i = 0; i < M; i ++) {
        if (X[i] == 1) sum += W[i];
    }

    vector<vector<ll>> pos(2, vector<ll>(N + 5, 0));

    for (int i = 0; i < M; i ++) {
        pos[X[i]][Y[i]] += W[i];
    }

    ll best_res = sum;

    ll sum_zero = 0;
    ll sum_uno = 0;
    for (int i = 0; i < N + 5; i ++) {
        sum_zero += pos[0][i];
        sum_uno += pos[1][i];
        best_res = max(best_res, sum - sum_uno + sum_zero);
    }

    return best_res;
}

ll res_y_zero(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    vector<vector<ll>> dp(2, vector<ll>(N + 5)); // posso prendere a sx o no, posizione

    vector<ll> grid(N + 5);
    for (int i = 0; i < M; i ++) grid[X[i]] = W[i];

    for (int i = N - 1; i >= 0; i --) {
        dp[0][i] = dp[1][i + 1];
        dp[0][i] = max(dp[0][i], dp[0][i + 1]);
        dp[0][i] = max(dp[0][i], dp[0][i + 2] + grid[i + 1]);
        dp[0][i] = max(dp[0][i], dp[1][i + 3] + grid[i + 1]);
        dp[0][i] = max(dp[0][i], dp[0][i + 3] + grid[i + 1]);

        if (i != 0) {
            dp[1][i] = dp[1][i + 1];
            dp[1][i] = max(dp[1][i], dp[0][i + 1] + grid[i - 1]);
            dp[1][i] = max(dp[1][i], dp[0][i + 2] + grid[i - 1] + grid[i + 1]); 
            dp[1][i] = max(dp[1][i], dp[1][i + 3] + grid[i - 1] + grid[i + 1]); 
            dp[1][i] = max(dp[1][i], dp[0][i + 3] + grid[i - 1] + grid[i + 1]); 
        }
    }

    ll best_res = 0;
    for (int i = 0; i <= N; i ++) {
        best_res = max(best_res, dp[0][i]);
        best_res = max(best_res, dp[1][i]);
    }
    return best_res;
}

ll cubic(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    // i, quanto lo alzo, quanto era alzato a destra
    // int MAXY = min(N, 9);
    int MAXY = N;
    ll dp[N + 5][MAXY + 5][MAXY + 5]; 

    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            for (int k = 0; k < MAXY + 5; k ++) {
                dp[i][j][k] = 0;
            }
        }
    }

    ll grid[N + 5][MAXY + 5];
    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            grid[i][j] = 0;
        }
    }

    for (int i = 0; i < M; i ++) grid[X[i]][Y[i]] = W[i];

    ll ps_grid[N + 5][MAXY + 5]; // 1 based per le Y

    for (int i = 0; i < N + 5; i ++) {
        ps_grid[i][0] = 0;
        for (int j = 0; j < MAXY + 4; j ++) {
            ps_grid[i][j + 1] = ps_grid[i][j] + grid[i][j];
        }
    }

    for (int i = N - 1; i >= 0; i --) {
        for (int y = 0; y <= MAXY; y ++) {
            for (int dx = 0; dx <= MAXY; dx ++) {
                // quanto mi alzo
                for (int dxdx = 0; dxdx <= MAXY; dxdx ++) {
 
                    ll preso = -ps_grid[i][min(dx, y)];
                    if (y > max(dx, dxdx)) {
                        preso += ps_grid[i + 1][y] - ps_grid[i + 1][max(dx, dxdx)];
                    }
                    if (i > 0) {
                        preso += ps_grid[i - 1][y];
                        // cout << " e poi si aggiunge a sx " << ps_grid[i - 1][y] << '\n';
                    }

                    // cout << "preso : " << preso << '\n';
                    // cout << "new value : " << dp[i + 1][dx][dxdx] + preso << '\n';

                    dp[i][y][dx] = max(dp[i][y][dx], dp[i + 1][dx][dxdx] + preso);
                }
            }
        }
    }

    ll res = 0;
    for (int i = 0; i < N; i ++) {
        for (int y = 0; y < MAXY; y ++) {
            for (int dx = 0; dx < MAXY; dx ++) {
                res = max(res, dp[i][y][dx]);
            }
        }
    }

    return res;
}


struct segment {
    vector<ll> seg;

    segment() {
        seg.assign(2 * PW, 0);
    }

    void update(int x, ll d) {
        x += PW;
        while (x >= 1) {
            seg[x] = max(seg[x], d);
            x /= 2;
        }
    }

    ll query(int l, int r) {
        l += PW; r += PW;
        ll res = 0;
        while (l <= r) {
            if (l % 2 == 1) {
                res = max(res, seg[l]);
                l ++;
            }
            if (r % 2 == 0) {
                res = max(res, seg[r]);
                r --;
            }
            l /= 2; r /= 2;
        }
        return res;
    }
};

ll cubic_seg(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    // i, quanto lo alzo, quanto era alzato a destra
    // int MAXY = min(N, 9);
    int MAXY = N;
    ll dp[N + 5][MAXY + 5][MAXY + 5]; 

    ll seg_no_ps[N + 5][MAXY + 5][MAXY + 5];
    ll seg_ps[N + 5][MAXY + 5][MAXY + 5];

    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            for (int k = 0; k < MAXY + 5; k ++) {
                dp[i][j][k] = 0;
            }
        }
    }

    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            for (int k = 0; k < MAXY + 5; k ++) {
                seg_no_ps[i][j][k] = 0;
                seg_ps[i][j][k] = 0;
            }
        }
    }

    ll grid[N + 5][MAXY + 5];
    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            grid[i][j] = 0;
        }
    }

    for (int i = 0; i < M; i ++) grid[X[i]][Y[i]] = W[i];

    ll ps_grid[N + 5][MAXY + 5]; // 1 based per le Y

    for (int i = 0; i < N + 5; i ++) {
        ps_grid[i][0] = 0;
        for (int j = 0; j < MAXY + 4; j ++) {
            ps_grid[i][j + 1] = ps_grid[i][j] + grid[i][j];
        }
    }

    for (int i = N - 1; i >= 0; i --) {

        vector<vector<ll>> curr_right_of_dx_right_of_y(MAXY + 1, vector<ll>(MAXY + 1));

        for (int dx = 0; dx <= MAXY; dx ++) {
            curr_right_of_dx_right_of_y[dx][MAXY] = seg_no_ps[i + 1][dx][MAXY];
            for (int y = MAXY - 1; y >= 0; y --) {
                curr_right_of_dx_right_of_y[dx][y] = max(
                    curr_right_of_dx_right_of_y[dx][y + 1], seg_no_ps[i + 1][dx][y]
                );
            }
        }

        vector<vector<ll>> curr_left_of_dx(MAXY + 1, vector<ll>(MAXY + 1));

        for (int dx = 0; dx <= MAXY; dx ++) {
            curr_left_of_dx[dx][0] = seg_no_ps[i + 1][dx][0];
            for (int y = 1; y <= MAXY; y ++) {
                curr_left_of_dx[dx][y] = max(
                    curr_left_of_dx[dx][y - 1], seg_no_ps[i + 1][dx][y]
                );
            }
        }

        vector<vector<ll>> curr_right_of_dx_left_of_y(MAXY + 1, vector<ll>(MAXY + 1));

        for (int dx = 0; dx <= MAXY; dx ++) {
            curr_right_of_dx_left_of_y[dx][dx] = seg_ps[i + 1][dx][dx];
            for (int y = dx + 1; y <= MAXY; y ++) {
                curr_right_of_dx_left_of_y[dx][i] = max(
                    curr_right_of_dx_left_of_y[dx][y - 1], seg_ps[i + 1][dx][y]
                );
            }
        }


        for (int y = 0; y <= MAXY; y ++) {
            
            for (int dx = 0; dx <= MAXY; dx ++) {

                ll preso = -ps_grid[i][min(dx, y)];
                if (i > 0) preso += ps_grid[i - 1][y];
                
                // dxdx a sinistra di dx;
                ll left_of_dx = curr_left_of_dx[dx][dx] + ps_grid[i + 1][max(y, dx)] - ps_grid[i + 1][dx];

                // dxdx a destra di dx;
                ll right_of_dx_left_of_y = 0;
                if (y > dx) {
                    right_of_dx_left_of_y = curr_right_of_dx_left_of_y[dx][y] + ps_grid[i + 1][y];
                }

                ll right_of_dx_right_of_y = curr_right_of_dx_right_of_y[dx][max(dx, y)];

                dp[i][y][dx] = left_of_dx + preso;
                dp[i][y][dx] = max(dp[i][y][dx], right_of_dx_left_of_y + preso);
                dp[i][y][dx] = max(dp[i][y][dx], right_of_dx_right_of_y + preso);

                seg_no_ps[i][y][dx] = dp[i][y][dx];
                seg_ps[i][y][dx] = dp[i][y][dx] - ps_grid[i][dx];
                
            }
        }
    }

    ll res = 0;
    for (int i = 0; i < N; i ++) {
        for (int y = 0; y <= MAXY; y ++) {
            for (int dx = 0; dx <= MAXY; dx ++) {
                res = max(res, dp[i][y][dx]);
            }
        }
    }

    return res;
}


ll max_weights(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    bool all_even = 1;
    for (auto x : X) if (x % 2) all_even = 0;
    if (all_even) return sum_tutto(N, M, X, Y, W);

    bool minore_di_due = 1;
    for (auto x : X) if (x >= 2) minore_di_due = 0;
    if (minore_di_due) return res_minore_di_due(N, M, X, Y, W);

    bool y_zero = 1;
    for (auto y : Y) if (y > 0) y_zero = 0;
    if (y_zero) return res_y_zero(N, M, X, Y, W);

    return cubic_seg(N, M, X, Y, W);
}
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4440 KB Output is correct
2 Correct 21 ms 5468 KB Output is correct
3 Correct 0 ms 344 KB Output is correct
4 Correct 0 ms 428 KB Output is correct
5 Correct 71 ms 16100 KB Output is correct
6 Correct 60 ms 16212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 33 ms 10408 KB Output is correct
3 Correct 38 ms 12808 KB Output is correct
4 Correct 14 ms 4440 KB Output is correct
5 Correct 24 ms 5252 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 1 ms 436 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 344 KB Output is correct
12 Correct 25 ms 6744 KB Output is correct
13 Correct 20 ms 7768 KB Output is correct
14 Correct 16 ms 6636 KB Output is correct
15 Correct 19 ms 7516 KB Output is correct
16 Correct 22 ms 6748 KB Output is correct
17 Correct 18 ms 7260 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 2 ms 2652 KB Output is correct
3 Correct 11 ms 5356 KB Output is correct
4 Correct 8 ms 4576 KB Output is correct
5 Correct 25 ms 7848 KB Output is correct
6 Correct 17 ms 7256 KB Output is correct
7 Correct 27 ms 7760 KB Output is correct
8 Correct 23 ms 7768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 408 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 104 ms 88840 KB Output is correct
10 Correct 808 ms 670540 KB Output is correct
11 Correct 97 ms 88844 KB Output is correct
12 Correct 749 ms 670796 KB Output is correct
13 Correct 16 ms 12892 KB Output is correct
14 Correct 761 ms 670460 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 408 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 104 ms 88840 KB Output is correct
10 Correct 808 ms 670540 KB Output is correct
11 Correct 97 ms 88844 KB Output is correct
12 Correct 749 ms 670796 KB Output is correct
13 Correct 16 ms 12892 KB Output is correct
14 Correct 761 ms 670460 KB Output is correct
15 Correct 770 ms 670432 KB Output is correct
16 Correct 13 ms 12632 KB Output is correct
17 Correct 767 ms 672852 KB Output is correct
18 Correct 784 ms 672772 KB Output is correct
19 Correct 856 ms 672828 KB Output is correct
20 Correct 775 ms 672792 KB Output is correct
21 Correct 766 ms 672752 KB Output is correct
22 Correct 813 ms 675240 KB Output is correct
23 Correct 793 ms 670904 KB Output is correct
24 Correct 780 ms 671988 KB Output is correct
25 Correct 758 ms 670496 KB Output is correct
26 Correct 815 ms 670960 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 408 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 104 ms 88840 KB Output is correct
10 Correct 808 ms 670540 KB Output is correct
11 Correct 97 ms 88844 KB Output is correct
12 Correct 749 ms 670796 KB Output is correct
13 Correct 16 ms 12892 KB Output is correct
14 Correct 761 ms 670460 KB Output is correct
15 Correct 770 ms 670432 KB Output is correct
16 Correct 13 ms 12632 KB Output is correct
17 Correct 767 ms 672852 KB Output is correct
18 Correct 784 ms 672772 KB Output is correct
19 Correct 856 ms 672828 KB Output is correct
20 Correct 775 ms 672792 KB Output is correct
21 Correct 766 ms 672752 KB Output is correct
22 Correct 813 ms 675240 KB Output is correct
23 Correct 793 ms 670904 KB Output is correct
24 Correct 780 ms 671988 KB Output is correct
25 Correct 758 ms 670496 KB Output is correct
26 Correct 815 ms 670960 KB Output is correct
27 Execution timed out 1037 ms 2097152 KB Time limit exceeded
28 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 2 ms 2652 KB Output is correct
3 Correct 11 ms 5356 KB Output is correct
4 Correct 8 ms 4576 KB Output is correct
5 Correct 25 ms 7848 KB Output is correct
6 Correct 17 ms 7256 KB Output is correct
7 Correct 27 ms 7760 KB Output is correct
8 Correct 23 ms 7768 KB Output is correct
9 Runtime error 991 ms 2097152 KB Execution killed with signal 9
10 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4440 KB Output is correct
2 Correct 21 ms 5468 KB Output is correct
3 Correct 0 ms 344 KB Output is correct
4 Correct 0 ms 428 KB Output is correct
5 Correct 71 ms 16100 KB Output is correct
6 Correct 60 ms 16212 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 33 ms 10408 KB Output is correct
9 Correct 38 ms 12808 KB Output is correct
10 Correct 14 ms 4440 KB Output is correct
11 Correct 24 ms 5252 KB Output is correct
12 Correct 0 ms 344 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 1 ms 436 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 25 ms 6744 KB Output is correct
19 Correct 20 ms 7768 KB Output is correct
20 Correct 16 ms 6636 KB Output is correct
21 Correct 19 ms 7516 KB Output is correct
22 Correct 22 ms 6748 KB Output is correct
23 Correct 18 ms 7260 KB Output is correct
24 Correct 1 ms 344 KB Output is correct
25 Correct 2 ms 2652 KB Output is correct
26 Correct 11 ms 5356 KB Output is correct
27 Correct 8 ms 4576 KB Output is correct
28 Correct 25 ms 7848 KB Output is correct
29 Correct 17 ms 7256 KB Output is correct
30 Correct 27 ms 7760 KB Output is correct
31 Correct 23 ms 7768 KB Output is correct
32 Correct 0 ms 344 KB Output is correct
33 Correct 1 ms 348 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 0 ms 408 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 104 ms 88840 KB Output is correct
41 Correct 808 ms 670540 KB Output is correct
42 Correct 97 ms 88844 KB Output is correct
43 Correct 749 ms 670796 KB Output is correct
44 Correct 16 ms 12892 KB Output is correct
45 Correct 761 ms 670460 KB Output is correct
46 Correct 770 ms 670432 KB Output is correct
47 Correct 13 ms 12632 KB Output is correct
48 Correct 767 ms 672852 KB Output is correct
49 Correct 784 ms 672772 KB Output is correct
50 Correct 856 ms 672828 KB Output is correct
51 Correct 775 ms 672792 KB Output is correct
52 Correct 766 ms 672752 KB Output is correct
53 Correct 813 ms 675240 KB Output is correct
54 Correct 793 ms 670904 KB Output is correct
55 Correct 780 ms 671988 KB Output is correct
56 Correct 758 ms 670496 KB Output is correct
57 Correct 815 ms 670960 KB Output is correct
58 Execution timed out 1037 ms 2097152 KB Time limit exceeded
59 Halted 0 ms 0 KB -