Submission #1083979

# Submission time Handle Problem Language Result Execution time Memory
1083979 2024-09-04T17:55:20 Z SamueleVid Catfish Farm (IOI22_fish) C++17
32 / 100
1000 ms 2097152 KB
#include <bits/stdc++.h>
using namespace std;
#define ll long long

constexpr int MAXN = 1e5 + 5;
constexpr int PW = 512;

ll sum_tutto(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    ll sum = 0;
    for (auto x : W) sum += x;
    return sum;
}

ll res_minore_di_due(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    if (N == 2) {
        // massimo tra 0 e 1    
        ll one = 0;
        ll zero = 0;
        for (int i = 0; i < M; i ++) {
            if (X[i] == 0) zero += W[i];
            else one += W[i];
        }

        return max(one, zero);
    }

    // altrimenti piazza una riga in 2 e poi prendi prefisso maggiore piazzando in 1
    
    ll sum = 0;
    for (int i = 0; i < M; i ++) {
        if (X[i] == 1) sum += W[i];
    }

    vector<vector<ll>> pos(2, vector<ll>(N + 5, 0));

    for (int i = 0; i < M; i ++) {
        pos[X[i]][Y[i]] += W[i];
    }

    ll best_res = sum;

    ll sum_zero = 0;
    ll sum_uno = 0;
    for (int i = 0; i < N + 5; i ++) {
        sum_zero += pos[0][i];
        sum_uno += pos[1][i];
        best_res = max(best_res, sum - sum_uno + sum_zero);
    }

    return best_res;
}

ll res_y_zero(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    vector<vector<ll>> dp(2, vector<ll>(N + 5)); // posso prendere a sx o no, posizione

    vector<ll> grid(N + 5);
    for (int i = 0; i < M; i ++) grid[X[i]] = W[i];

    for (int i = N - 1; i >= 0; i --) {
        dp[0][i] = dp[1][i + 1];
        dp[0][i] = max(dp[0][i], dp[0][i + 1]);
        dp[0][i] = max(dp[0][i], dp[0][i + 2] + grid[i + 1]);
        dp[0][i] = max(dp[0][i], dp[1][i + 3] + grid[i + 1]);
        dp[0][i] = max(dp[0][i], dp[0][i + 3] + grid[i + 1]);

        if (i != 0) {
            dp[1][i] = dp[1][i + 1];
            dp[1][i] = max(dp[1][i], dp[0][i + 1] + grid[i - 1]);
            dp[1][i] = max(dp[1][i], dp[0][i + 2] + grid[i - 1] + grid[i + 1]); 
            dp[1][i] = max(dp[1][i], dp[1][i + 3] + grid[i - 1] + grid[i + 1]); 
            dp[1][i] = max(dp[1][i], dp[0][i + 3] + grid[i - 1] + grid[i + 1]); 
        }
    }

    ll best_res = 0;
    for (int i = 0; i <= N; i ++) {
        best_res = max(best_res, dp[0][i]);
        best_res = max(best_res, dp[1][i]);
    }
    return best_res;
}

ll cubic(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    // i, quanto lo alzo, quanto era alzato a destra
    // int MAXY = min(N, 9);
    int MAXY = N;
    ll dp[N + 5][MAXY + 5][MAXY + 5]; 

    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            for (int k = 0; k < MAXY + 5; k ++) {
                dp[i][j][k] = 0;
            }
        }
    }

    ll grid[N + 5][MAXY + 5];
    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            grid[i][j] = 0;
        }
    }

    for (int i = 0; i < M; i ++) grid[X[i]][Y[i]] = W[i];

    ll ps_grid[N + 5][MAXY + 5]; // 1 based per le Y

    for (int i = 0; i < N + 5; i ++) {
        ps_grid[i][0] = 0;
        for (int j = 0; j < MAXY + 4; j ++) {
            ps_grid[i][j + 1] = ps_grid[i][j] + grid[i][j];
        }
    }

    for (int i = N - 1; i >= 0; i --) {
        for (int y = 0; y <= MAXY; y ++) {
            for (int dx = 0; dx <= MAXY; dx ++) {
                // quanto mi alzo
                for (int dxdx = 0; dxdx <= MAXY; dxdx ++) {
 
                    ll preso = -ps_grid[i][min(dx, y)];
                    if (y > max(dx, dxdx)) {
                        preso += ps_grid[i + 1][y] - ps_grid[i + 1][max(dx, dxdx)];
                    }
                    if (i > 0) {
                        preso += ps_grid[i - 1][y];
                        // cout << " e poi si aggiunge a sx " << ps_grid[i - 1][y] << '\n';
                    }

                    // cout << "preso : " << preso << '\n';
                    // cout << "new value : " << dp[i + 1][dx][dxdx] + preso << '\n';

                    dp[i][y][dx] = max(dp[i][y][dx], dp[i + 1][dx][dxdx] + preso);
                }
            }
        }
    }

    ll res = 0;
    for (int i = 0; i < N; i ++) {
        for (int y = 0; y < MAXY; y ++) {
            for (int dx = 0; dx < MAXY; dx ++) {
                res = max(res, dp[i][y][dx]);
            }
        }
    }

    return res;
}


struct segment {
    vector<ll> seg;

    segment() {
        seg.assign(2 * PW, 0);
    }

    void update(int x, ll d) {
        x += PW;
        while (x >= 1) {
            seg[x] = max(seg[x], d);
            x /= 2;
        }
    }

    ll query(int l, int r) {
        l += PW; r += PW;
        ll res = 0;
        while (l <= r) {
            if (l % 2 == 1) {
                res = max(res, seg[l]);
                l ++;
            }
            if (r % 2 == 0) {
                res = max(res, seg[r]);
                r --;
            }
            l /= 2; r /= 2;
        }
        return res;
    }
};

ll cubic_seg(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    // i, quanto lo alzo, quanto era alzato a destra
    // int MAXY = min(N, 9);
    int MAXY = N;
    ll dp[N + 5][MAXY + 5][MAXY + 5]; 

    ll seg_no_ps[N + 5][MAXY + 5][MAXY + 5];
    ll seg_ps[N + 5][MAXY + 5][MAXY + 5];

    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            for (int k = 0; k < MAXY + 5; k ++) {
                dp[i][j][k] = 0;
            }
        }
    }

    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            for (int k = 0; k < MAXY + 5; k ++) {
                seg_no_ps[i][j][k] = 0;
                seg_ps[i][j][k] = 0;
            }
        }
    }

    ll grid[N + 5][MAXY + 5];
    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            grid[i][j] = 0;
        }
    }

    for (int i = 0; i < M; i ++) grid[X[i]][Y[i]] = W[i];

    ll ps_grid[N + 5][MAXY + 5]; // 1 based per le Y

    for (int i = 0; i < N + 5; i ++) {
        ps_grid[i][0] = 0;
        for (int j = 0; j < MAXY + 4; j ++) {
            ps_grid[i][j + 1] = ps_grid[i][j] + grid[i][j];
        }
    }

    for (int i = N - 1; i >= 0; i --) {

        vector<vector<ll>> curr_right_of_dx_right_of_y(MAXY + 1, vector<ll>(MAXY + 1));

        for (int dx = 0; dx <= MAXY; dx ++) {
            curr_right_of_dx_right_of_y[dx][MAXY] = seg_no_ps[i + 1][dx][MAXY];
            for (int y = MAXY - 1; y >= 0; y --) {
                curr_right_of_dx_right_of_y[dx][y] = max(
                    curr_right_of_dx_right_of_y[dx][y + 1], seg_no_ps[i + 1][dx][y]
                );
            }
        }

        vector<vector<ll>> curr_left_of_dx(MAXY + 1, vector<ll>(MAXY + 1));

        for (int dx = 0; dx <= MAXY; dx ++) {
            curr_left_of_dx[dx][0] = seg_no_ps[i + 1][dx][0];
            for (int y = 1; y <= MAXY; y ++) {
                curr_left_of_dx[dx][y] = max(
                    curr_left_of_dx[dx][y - 1], seg_no_ps[i + 1][dx][y]
                );
            }
        }

        vector<vector<ll>> curr_right_of_dx_left_of_y(MAXY + 1, vector<ll>(MAXY + 1));

        for (int dx = 0; dx <= MAXY; dx ++) {
            curr_right_of_dx_left_of_y[dx][dx] = seg_ps[i + 1][dx][dx];
            for (int y = dx + 1; y <= MAXY; y ++) {
                curr_right_of_dx_left_of_y[dx][i] = max(
                    curr_right_of_dx_left_of_y[dx][y - 1], seg_ps[i + 1][dx][y]
                );
            }
        }


        for (int y = 0; y <= MAXY; y ++) {
            
            for (int dx = 0; dx <= MAXY; dx ++) {

                ll preso = -ps_grid[i][min(dx, y)];
                if (i > 0) preso += ps_grid[i - 1][y];
                
                // dxdx a sinistra di dx;
                ll left_of_dx = curr_left_of_dx[dx][dx] + ps_grid[i + 1][max(y, dx)] - ps_grid[i + 1][dx];

                // dxdx a destra di dx;
                ll right_of_dx_left_of_y = 0;
                if (y > dx) {
                    right_of_dx_left_of_y = curr_right_of_dx_left_of_y[dx][y] + ps_grid[i + 1][y];
                }

                ll right_of_dx_right_of_y = curr_right_of_dx_right_of_y[dx][max(dx, y)];

                dp[i][y][dx] = left_of_dx + preso;
                dp[i][y][dx] = max(dp[i][y][dx], right_of_dx_left_of_y + preso);
                dp[i][y][dx] = max(dp[i][y][dx], right_of_dx_right_of_y + preso);

                seg_no_ps[i][y][dx] = dp[i][y][dx];
                seg_ps[i][y][dx] = dp[i][y][dx] - ps_grid[i][dx];
                
            }
        }
    }

    ll res = 0;
    for (int i = 0; i < N; i ++) {
        for (int y = 0; y < MAXY; y ++) {
            for (int dx = 0; dx < MAXY; dx ++) {
                res = max(res, dp[i][y][dx]);
            }
        }
    }

    return res;
}


ll max_weights(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    bool all_even = 1;
    for (auto x : X) if (x % 2) all_even = 0;
    if (all_even) return sum_tutto(N, M, X, Y, W);

    bool minore_di_due = 1;
    for (auto x : X) if (x >= 2) minore_di_due = 0;
    if (minore_di_due) return res_minore_di_due(N, M, X, Y, W);

    bool y_zero = 1;
    for (auto y : Y) if (y > 0) y_zero = 0;
    if (y_zero) return res_y_zero(N, M, X, Y, W);

    return cubic_seg(N, M, X, Y, W);
}
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4696 KB Output is correct
2 Correct 18 ms 5464 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 62 ms 15956 KB Output is correct
6 Correct 62 ms 16348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 34 ms 10324 KB Output is correct
3 Correct 44 ms 12888 KB Output is correct
4 Correct 15 ms 4448 KB Output is correct
5 Correct 18 ms 5376 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 16 ms 6748 KB Output is correct
13 Correct 22 ms 7620 KB Output is correct
14 Correct 16 ms 6748 KB Output is correct
15 Correct 20 ms 7332 KB Output is correct
16 Correct 19 ms 6740 KB Output is correct
17 Correct 20 ms 7368 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 2652 KB Output is correct
3 Correct 12 ms 5224 KB Output is correct
4 Correct 9 ms 4700 KB Output is correct
5 Correct 19 ms 7600 KB Output is correct
6 Correct 17 ms 7260 KB Output is correct
7 Correct 19 ms 7728 KB Output is correct
8 Correct 20 ms 7604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 93 ms 89292 KB Output is correct
10 Correct 782 ms 670572 KB Output is correct
11 Correct 93 ms 88820 KB Output is correct
12 Correct 755 ms 670464 KB Output is correct
13 Correct 10 ms 12636 KB Output is correct
14 Correct 757 ms 670472 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 93 ms 89292 KB Output is correct
10 Correct 782 ms 670572 KB Output is correct
11 Correct 93 ms 88820 KB Output is correct
12 Correct 755 ms 670464 KB Output is correct
13 Correct 10 ms 12636 KB Output is correct
14 Correct 757 ms 670472 KB Output is correct
15 Correct 755 ms 670440 KB Output is correct
16 Correct 11 ms 12632 KB Output is correct
17 Correct 800 ms 672788 KB Output is correct
18 Correct 764 ms 672744 KB Output is correct
19 Correct 747 ms 672832 KB Output is correct
20 Correct 761 ms 672748 KB Output is correct
21 Correct 746 ms 672748 KB Output is correct
22 Incorrect 755 ms 675080 KB 1st lines differ - on the 1st token, expected: '30031507901281', found: '30030588286560'
23 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 93 ms 89292 KB Output is correct
10 Correct 782 ms 670572 KB Output is correct
11 Correct 93 ms 88820 KB Output is correct
12 Correct 755 ms 670464 KB Output is correct
13 Correct 10 ms 12636 KB Output is correct
14 Correct 757 ms 670472 KB Output is correct
15 Correct 755 ms 670440 KB Output is correct
16 Correct 11 ms 12632 KB Output is correct
17 Correct 800 ms 672788 KB Output is correct
18 Correct 764 ms 672744 KB Output is correct
19 Correct 747 ms 672832 KB Output is correct
20 Correct 761 ms 672748 KB Output is correct
21 Correct 746 ms 672748 KB Output is correct
22 Incorrect 755 ms 675080 KB 1st lines differ - on the 1st token, expected: '30031507901281', found: '30030588286560'
23 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 2652 KB Output is correct
3 Correct 12 ms 5224 KB Output is correct
4 Correct 9 ms 4700 KB Output is correct
5 Correct 19 ms 7600 KB Output is correct
6 Correct 17 ms 7260 KB Output is correct
7 Correct 19 ms 7728 KB Output is correct
8 Correct 20 ms 7604 KB Output is correct
9 Execution timed out 1018 ms 2097152 KB Time limit exceeded
10 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4696 KB Output is correct
2 Correct 18 ms 5464 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 62 ms 15956 KB Output is correct
6 Correct 62 ms 16348 KB Output is correct
7 Correct 0 ms 344 KB Output is correct
8 Correct 34 ms 10324 KB Output is correct
9 Correct 44 ms 12888 KB Output is correct
10 Correct 15 ms 4448 KB Output is correct
11 Correct 18 ms 5376 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 16 ms 6748 KB Output is correct
19 Correct 22 ms 7620 KB Output is correct
20 Correct 16 ms 6748 KB Output is correct
21 Correct 20 ms 7332 KB Output is correct
22 Correct 19 ms 6740 KB Output is correct
23 Correct 20 ms 7368 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 2 ms 2652 KB Output is correct
26 Correct 12 ms 5224 KB Output is correct
27 Correct 9 ms 4700 KB Output is correct
28 Correct 19 ms 7600 KB Output is correct
29 Correct 17 ms 7260 KB Output is correct
30 Correct 19 ms 7728 KB Output is correct
31 Correct 20 ms 7604 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 0 ms 348 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 1 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 1 ms 348 KB Output is correct
38 Correct 1 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 93 ms 89292 KB Output is correct
41 Correct 782 ms 670572 KB Output is correct
42 Correct 93 ms 88820 KB Output is correct
43 Correct 755 ms 670464 KB Output is correct
44 Correct 10 ms 12636 KB Output is correct
45 Correct 757 ms 670472 KB Output is correct
46 Correct 755 ms 670440 KB Output is correct
47 Correct 11 ms 12632 KB Output is correct
48 Correct 800 ms 672788 KB Output is correct
49 Correct 764 ms 672744 KB Output is correct
50 Correct 747 ms 672832 KB Output is correct
51 Correct 761 ms 672748 KB Output is correct
52 Correct 746 ms 672748 KB Output is correct
53 Incorrect 755 ms 675080 KB 1st lines differ - on the 1st token, expected: '30031507901281', found: '30030588286560'
54 Halted 0 ms 0 KB -