#include <iostream>
#include <vector>
#include <numeric>
#include <cassert>
#include <map>
#include <tuple>
#include <functional>
#include <algorithm>
#include <unordered_map>
#include "werewolf.h"
using namespace std;
struct Node {
int l, r, sm;
Node *lft, *rht;
Node(int tl, int tr): l(tl), r(tr), sm(0) {
if (l + 1 != r) {
lft = new Node(l, (l + r) / 2);
rht = new Node((l + r) / 2, r);
} else {
lft = rht = NULL;
}
}
void update(int pos) {
if (pos < l || r <= pos) {
return;
}
if (l + 1 == r) {
sm++;
return;
}
lft->update(pos);
rht->update(pos);
sm = lft->sm + rht->sm;
}
int query(int ql, int qr) {
if (qr <= l || r <= ql) {
return 0;
}
if (ql <= l && r <= qr) {
return sm;
}
return lft->query(ql, qr) + rht->query(ql, qr);
}
};
int par[400005], processed[200005], jmp1[400005][20], jmp2[400005][20], jmpmn[400005][20], jmpmx[400005][20], mn[400005], mx[400005], in1[400005], out1[400005], in2[400005], out2[400005], pos[200005];
vector<int> adj[200005], krt1[400005], krt2[400005], ans;
vector<pair<int, int>> baseRange1, baseRange2, updates[200005];
vector<tuple<int, int, int, int>> queries;
map<tuple<int, int, int>, int> ret;
Node *root;
vector<int> check_validity(int N, vector<int> X, vector<int> Y, vector<int> S, vector<int> E, vector<int> L, vector<int> R) {
for (int i = 0; i < (int) X.size(); i++) {
adj[X[i]].push_back(Y[i]);
adj[Y[i]].push_back(X[i]);
}
iota(par, par + 2 * N, 0);
function<int(int)> find = [&](int x) -> int {
return x == par[x] ? x : par[x] = find(par[x]);
};
int idx = N;
function<void(int, int, bool)> merge = [&](int x, int y, bool one) -> void {
x = find(x);
y = find(y);
if (x != y) {
par[x] = par[y] = par[idx] = idx;
if (one) {
krt1[idx].push_back(x);
krt1[idx].push_back(y);
} else {
krt2[idx].push_back(x);
krt2[idx].push_back(y);
}
idx++;
}
};
for (int i = N - 1; i >= 0; i--) {
processed[i] = true;
for (int j : adj[i]) {
if (processed[j]) {
merge(i, j, true);
}
}
}
int root1 = idx - 1;
iota(par, par + 2 * N, 0);
idx = N;
fill(processed, processed + N, false);
for (int i = 0; i < N; i++) {
processed[i] = true;
for (int j : adj[i]) {
if (processed[j]) {
merge(i, j, false);
}
}
}
int root2 = idx - 1;
fill(mn, mn + 2 * N, 2e9);
fill(&jmp1[0][0], &jmp1[0][0] + sizeof(jmp1) / sizeof(jmp1[0][0]), -1);
fill(&jmpmn[0][0], &jmpmn[0][0] + sizeof(jmpmn) / sizeof(jmpmn[0][0]), 2e9);
int counter = 0;
function<void(int)> dfs1 = [&](int x) -> void {
in1[x] = counter++;
if (krt1[x].size() == 0) {
mn[x] = x;
baseRange1.push_back({in1[x], x});
}
for (int i : krt1[x]) {
dfs1(i);
mn[x] = min(mn[x], mn[i]);
}
for (int i : krt1[x]) {
jmp1[i][0] = x;
jmpmn[i][0] = mn[x];
}
out1[x] = counter++;
};
fill(mx, mx + 2 * N, -1);
fill(&jmp2[0][0], &jmp2[0][0] + sizeof(jmp2) / sizeof(jmp2[0][0]), -1);
fill(&jmpmx[0][0], &jmpmx[0][0] + sizeof(jmpmx) / sizeof(jmpmx[0][0]), 2e9);
counter = 0;
function<void(int)> dfs2 = [&](int x) -> void {
in2[x] = counter++;
if (krt2[x].size() == 0) {
mx[x] = x;
baseRange2.push_back({in2[x], x});
}
for (int i : krt2[x]) {
dfs2(i);
mx[x] = max(mx[x], mx[i]);
}
for (int i : krt2[x]) {
jmp2[i][0] = x;
jmpmx[i][0] = mx[x];
}
out2[x] = counter++;
};
dfs1(root1);
dfs2(root2);
for (int i = 1; i < 20; i++) {
for (int j = 0; j < 2 * N; j++) {
if (jmp1[j][i - 1] != -1) {
jmp1[j][i] = jmp1[jmp1[j][i - 1]][i - 1];
jmpmn[j][i] = min(jmpmn[j][i - 1], jmpmn[jmp1[j][i - 1]][i - 1]);
}
if (jmp2[j][i - 1] != -1) {
jmp2[j][i] = jmp2[jmp2[j][i - 1]][i - 1];
jmpmx[j][i] = max(jmpmx[j][i - 1], jmpmx[jmp2[j][i - 1]][i - 1]);
}
}
}
for (int i = 0, a, b, c, d; i < (int) S.size(); i++) {
int curr = S[i];
for (int j = 19; j >= 0; j--) {
if (jmp1[curr][j] != -1 && jmpmn[curr][j] >= L[i]) {
curr = jmp1[curr][j];
}
}
a = lower_bound(baseRange1.begin(), baseRange1.end(), pair{in1[curr], -1}) - baseRange1.begin();
b = upper_bound(baseRange1.begin(), baseRange1.end(), pair{out1[curr], -1}) - baseRange1.begin() - 1;
curr = E[i];
for (int j = 19; j >= 0; j--) {
if (jmp2[curr][j] != -1 && jmpmx[curr][j] <= R[i]) {
curr = jmp2[curr][j];
}
}
c = lower_bound(baseRange2.begin(), baseRange2.end(), pair{in2[curr], -1}) - baseRange2.begin();
d = upper_bound(baseRange2.begin(), baseRange2.end(), pair{out2[curr], -1}) - baseRange2.begin() - 1;
queries.push_back({a, b, c, d});
}
for (auto [a, b, c, d] : queries) {
updates[d].push_back({a, b});
if (c - 1 >= 0) {
updates[c - 1].push_back({a, b});
}
}
for (int i = 0; i < N; i++) {
pos[baseRange1[i].second] = i;
}
root = new Node(0, N + 5);
for (int i = 0; i < N; i++) {
root->update(pos[baseRange2[i].second]);
for (auto [a, b] : updates[i]) {
ret[{a, b, i}] = root->query(a, b + 1);
}
}
for (auto &[a, b, c, d] : queries) {
c--;
if (ret[{a, b, d}] - ret[{a, b, c}] > 0) {
ans.push_back(1);
} else {
ans.push_back(0);
}
}
return ans;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
65 ms |
153940 KB |
Output is correct |
2 |
Correct |
66 ms |
153864 KB |
Output is correct |
3 |
Correct |
72 ms |
153960 KB |
Output is correct |
4 |
Correct |
63 ms |
153680 KB |
Output is correct |
5 |
Correct |
65 ms |
153784 KB |
Output is correct |
6 |
Correct |
63 ms |
153880 KB |
Output is correct |
7 |
Correct |
66 ms |
153940 KB |
Output is correct |
8 |
Correct |
68 ms |
153844 KB |
Output is correct |
9 |
Correct |
66 ms |
153936 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
65 ms |
153940 KB |
Output is correct |
2 |
Correct |
66 ms |
153864 KB |
Output is correct |
3 |
Correct |
72 ms |
153960 KB |
Output is correct |
4 |
Correct |
63 ms |
153680 KB |
Output is correct |
5 |
Correct |
65 ms |
153784 KB |
Output is correct |
6 |
Correct |
63 ms |
153880 KB |
Output is correct |
7 |
Correct |
66 ms |
153940 KB |
Output is correct |
8 |
Correct |
68 ms |
153844 KB |
Output is correct |
9 |
Correct |
66 ms |
153936 KB |
Output is correct |
10 |
Correct |
75 ms |
155476 KB |
Output is correct |
11 |
Correct |
74 ms |
155472 KB |
Output is correct |
12 |
Correct |
73 ms |
155476 KB |
Output is correct |
13 |
Correct |
82 ms |
155488 KB |
Output is correct |
14 |
Correct |
79 ms |
155480 KB |
Output is correct |
15 |
Correct |
74 ms |
155208 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1181 ms |
260884 KB |
Output is correct |
2 |
Correct |
1361 ms |
269704 KB |
Output is correct |
3 |
Correct |
1342 ms |
262164 KB |
Output is correct |
4 |
Correct |
1012 ms |
249664 KB |
Output is correct |
5 |
Correct |
1053 ms |
251316 KB |
Output is correct |
6 |
Correct |
1269 ms |
260196 KB |
Output is correct |
7 |
Correct |
761 ms |
240572 KB |
Output is correct |
8 |
Correct |
1371 ms |
269516 KB |
Output is correct |
9 |
Correct |
889 ms |
249780 KB |
Output is correct |
10 |
Correct |
615 ms |
235572 KB |
Output is correct |
11 |
Correct |
756 ms |
243640 KB |
Output is correct |
12 |
Correct |
687 ms |
237236 KB |
Output is correct |
13 |
Correct |
1597 ms |
264152 KB |
Output is correct |
14 |
Correct |
1435 ms |
264120 KB |
Output is correct |
15 |
Correct |
1374 ms |
264244 KB |
Output is correct |
16 |
Correct |
1385 ms |
264336 KB |
Output is correct |
17 |
Correct |
789 ms |
240724 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
65 ms |
153940 KB |
Output is correct |
2 |
Correct |
66 ms |
153864 KB |
Output is correct |
3 |
Correct |
72 ms |
153960 KB |
Output is correct |
4 |
Correct |
63 ms |
153680 KB |
Output is correct |
5 |
Correct |
65 ms |
153784 KB |
Output is correct |
6 |
Correct |
63 ms |
153880 KB |
Output is correct |
7 |
Correct |
66 ms |
153940 KB |
Output is correct |
8 |
Correct |
68 ms |
153844 KB |
Output is correct |
9 |
Correct |
66 ms |
153936 KB |
Output is correct |
10 |
Correct |
75 ms |
155476 KB |
Output is correct |
11 |
Correct |
74 ms |
155472 KB |
Output is correct |
12 |
Correct |
73 ms |
155476 KB |
Output is correct |
13 |
Correct |
82 ms |
155488 KB |
Output is correct |
14 |
Correct |
79 ms |
155480 KB |
Output is correct |
15 |
Correct |
74 ms |
155208 KB |
Output is correct |
16 |
Correct |
1181 ms |
260884 KB |
Output is correct |
17 |
Correct |
1361 ms |
269704 KB |
Output is correct |
18 |
Correct |
1342 ms |
262164 KB |
Output is correct |
19 |
Correct |
1012 ms |
249664 KB |
Output is correct |
20 |
Correct |
1053 ms |
251316 KB |
Output is correct |
21 |
Correct |
1269 ms |
260196 KB |
Output is correct |
22 |
Correct |
761 ms |
240572 KB |
Output is correct |
23 |
Correct |
1371 ms |
269516 KB |
Output is correct |
24 |
Correct |
889 ms |
249780 KB |
Output is correct |
25 |
Correct |
615 ms |
235572 KB |
Output is correct |
26 |
Correct |
756 ms |
243640 KB |
Output is correct |
27 |
Correct |
687 ms |
237236 KB |
Output is correct |
28 |
Correct |
1597 ms |
264152 KB |
Output is correct |
29 |
Correct |
1435 ms |
264120 KB |
Output is correct |
30 |
Correct |
1374 ms |
264244 KB |
Output is correct |
31 |
Correct |
1385 ms |
264336 KB |
Output is correct |
32 |
Correct |
789 ms |
240724 KB |
Output is correct |
33 |
Correct |
1406 ms |
263520 KB |
Output is correct |
34 |
Correct |
586 ms |
203448 KB |
Output is correct |
35 |
Correct |
1554 ms |
269492 KB |
Output is correct |
36 |
Correct |
1317 ms |
262328 KB |
Output is correct |
37 |
Correct |
1540 ms |
268176 KB |
Output is correct |
38 |
Correct |
1349 ms |
263352 KB |
Output is correct |
39 |
Correct |
1349 ms |
272524 KB |
Output is correct |
40 |
Correct |
1087 ms |
252448 KB |
Output is correct |
41 |
Correct |
1115 ms |
258508 KB |
Output is correct |
42 |
Correct |
742 ms |
238260 KB |
Output is correct |
43 |
Correct |
1594 ms |
273944 KB |
Output is correct |
44 |
Correct |
1456 ms |
266636 KB |
Output is correct |
45 |
Correct |
1047 ms |
267072 KB |
Output is correct |
46 |
Correct |
1096 ms |
267228 KB |
Output is correct |
47 |
Correct |
1270 ms |
264372 KB |
Output is correct |
48 |
Correct |
1303 ms |
264192 KB |
Output is correct |
49 |
Correct |
1362 ms |
264476 KB |
Output is correct |
50 |
Correct |
1470 ms |
264192 KB |
Output is correct |
51 |
Correct |
1061 ms |
251672 KB |
Output is correct |
52 |
Correct |
1002 ms |
251588 KB |
Output is correct |