Submission #1083858

# Submission time Handle Problem Language Result Execution time Memory
1083858 2024-09-04T10:52:31 Z SamueleVid Catfish Farm (IOI22_fish) C++17
18 / 100
1000 ms 2097152 KB
#include <bits/stdc++.h>
using namespace std;
#define ll long long

constexpr int MAXN = 1e5 + 5;
constexpr int PW = 512;

ll sum_tutto(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    ll sum = 0;
    for (auto x : W) sum += x;
    return sum;
}

ll res_minore_di_due(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    if (N == 2) {
        // massimo tra 0 e 1    
        ll one = 0;
        ll zero = 0;
        for (int i = 0; i < M; i ++) {
            if (X[i] == 0) zero += W[i];
            else one += W[i];
        }

        return max(one, zero);
    }

    // altrimenti piazza una riga in 2 e poi prendi prefisso maggiore piazzando in 1
    
    ll sum = 0;
    for (int i = 0; i < M; i ++) {
        if (X[i] == 1) sum += W[i];
    }

    vector<vector<ll>> pos(2, vector<ll>(N + 5, 0));

    for (int i = 0; i < M; i ++) {
        pos[X[i]][Y[i]] += W[i];
    }

    ll best_res = sum;

    ll sum_zero = 0;
    ll sum_uno = 0;
    for (int i = 0; i < N + 5; i ++) {
        sum_zero += pos[0][i];
        sum_uno += pos[1][i];
        best_res = max(best_res, sum - sum_uno + sum_zero);
    }

    return best_res;
}

ll res_y_zero(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    vector<vector<ll>> dp(2, vector<ll>(N + 5)); // posso prendere a sx o no, posizione

    vector<ll> grid(N + 5);
    for (int i = 0; i < M; i ++) grid[X[i]] = W[i];

    for (int i = N - 1; i >= 0; i --) {
        dp[0][i] = dp[1][i + 1];
        dp[0][i] = max(dp[0][i], dp[0][i + 1]);
        dp[0][i] = max(dp[0][i], dp[0][i + 2] + grid[i + 1]);
        dp[0][i] = max(dp[0][i], dp[1][i + 3] + grid[i + 1]);
        dp[0][i] = max(dp[0][i], dp[0][i + 3] + grid[i + 1]);

        if (i != 0) {
            dp[1][i] = dp[1][i + 1];
            dp[1][i] = max(dp[1][i], dp[0][i + 1] + grid[i - 1]);
            dp[1][i] = max(dp[1][i], dp[0][i + 2] + grid[i - 1] + grid[i + 1]); 
            dp[1][i] = max(dp[1][i], dp[1][i + 3] + grid[i - 1] + grid[i + 1]); 
            dp[1][i] = max(dp[1][i], dp[0][i + 3] + grid[i - 1] + grid[i + 1]); 
        }
    }

    ll best_res = 0;
    for (int i = 0; i <= N; i ++) {
        best_res = max(best_res, dp[0][i]);
        best_res = max(best_res, dp[1][i]);
    }
    return best_res;
}

ll cubic(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    // i, quanto lo alzo, quanto era alzato a destra
    // int MAXY = min(N, 9);
    int MAXY = N;
    ll dp[N + 5][MAXY + 5][MAXY + 5]; 

    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            for (int k = 0; k < MAXY + 5; k ++) {
                dp[i][j][k] = 0;
            }
        }
    }

    ll grid[N + 5][MAXY + 5];
    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
                grid[i][j] = 0;
        }
    }

    for (int i = 0; i < M; i ++) grid[X[i]][Y[i]] = W[i];

    ll ps_grid[N + 5][MAXY + 5]; // 1 based per le Y

    for (int i = 0; i < N + 5; i ++) {
        ps_grid[i][0] = 0;
        for (int j = 0; j < MAXY + 4; j ++) {
            ps_grid[i][j + 1] = ps_grid[i][j] + grid[i][j];
        }
    }

    for (int i = N - 1; i >= 0; i --) {
        for (int y = 0; y <= MAXY; y ++) {
            for (int dx = 0; dx <= MAXY; dx ++) {
                // quanto mi alzo
                for (int dxdx = 0; dxdx <= MAXY; dxdx ++) {
 
                    ll preso = -ps_grid[i][min(dx, y)];
                    if (y > max(dx, dxdx)) {
                        preso += ps_grid[i + 1][y] - ps_grid[i + 1][max(dx, dxdx)];
                    }
                    if (i > 0) {
                        preso += ps_grid[i - 1][y];
                        // cout << " e poi si aggiunge a sx " << ps_grid[i - 1][y] << '\n';
                    }

                    // cout << "preso : " << preso << '\n';
                    // cout << "new value : " << dp[i + 1][dx][dxdx] + preso << '\n';

                    dp[i][y][dx] = max(dp[i][y][dx], dp[i + 1][dx][dxdx] + preso);
                }
            }
        }
    }

    ll res = 0;
    for (int i = 0; i < N; i ++) {
        for (int y = 0; y < MAXY; y ++) {
            for (int dx = 0; dx < MAXY; dx ++) {
                res = max(res, dp[i][y][dx]);
            }
        }
    }

    return res;
}

struct segment {
    vector<ll> seg;

    segment() {
        seg.assign(2 * PW, 0);
    }

    void update(int x, ll d) {
        x += PW;
        while (x >= 1) {
            seg[x] = max(seg[x], d);
            x /= 2;
        }
    }

    ll query(int l, int r) {
        l += PW; r += PW;
        ll res = 0;
        while (l < r) {
            if (l % 2 == 1) {
                res = max(res, seg[l]);
                l ++;
            }
            if (r % 2 == 0) {
                res = max(res, seg[r]);
                r ++;
            }
            l /= 2; r /= 2;
        }
        return res;
    }
};

ll cubic_seg(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    // i, quanto lo alzo, quanto era alzato a destra
    // int MAXY = min(N, 9);
    int MAXY = N;
    ll dp[N + 5][MAXY + 5][MAXY + 5]; 

    segment seg_no_ps[N + 5][MAXY + 5];
    segment seg_ps[N + 5][MAXY + 5];

    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            for (int k = 0; k < MAXY + 5; k ++) {
                dp[i][j][k] = 0;
            }
        }
    }

    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            seg_no_ps[i][j] = segment();
            seg_ps[i][j] = segment();
        }
    }

    ll grid[N + 5][MAXY + 5];
    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
                grid[i][j] = 0;
        }
    }

    for (int i = 0; i < M; i ++) grid[X[i]][Y[i]] = W[i];

    ll ps_grid[N + 5][MAXY + 5]; // 1 based per le Y

    for (int i = 0; i < N + 5; i ++) {
        ps_grid[i][0] = 0;
        for (int j = 0; j < MAXY + 4; j ++) {
            ps_grid[i][j + 1] = ps_grid[i][j] + grid[i][j];
        }
    }

    // cout << "N, MAXY : " << N << " " << MAXY << '\n';

    // cout << "grid : " << '\n';
    // for (int i = 0; i < N + 5; i ++) {
    //     for (int j = 0; j < MAXY + 5; j ++) {
    //         cout << grid[i][j] << " ";
    //     }
    //     cout << '\n';
    // }
    // cout << "ps_grid " << '\n';
    // for (int i = 0; i < N + 5; i ++) {
    //     for (int j = 0; j < MAXY + 5; j ++) {
    //         cout << ps_grid[i][j] << " ";
    //     }
    //     cout << '\n';
    // }

    for (int i = N - 1; i >= 0; i --) {
        for (int y = 0; y <= MAXY; y ++) {
            for (int dx = 0; dx <= MAXY; dx ++) {

                ll preso = -ps_grid[i][min(dx, y)];
                if (i > 0) preso += ps_grid[i - 1][y];
                
                // dxdx a sinistra di dx;
                ll left_of_dx = seg_no_ps[i + 1][dx].query(0, dx) + ps_grid[i + 1][max(y, dx)] - ps_grid[i + 1][dx];

                // dxdx a destra di dx;
                ll right_of_dx_left_of_y = 0;
                if (y > dx) {
                    ll right_of_dx_left_of_y = seg_ps[i + 1][dx].query(dx, y) + ps_grid[i + 1][y];
                }

                ll right_of_dx_right_of_y = seg_no_ps[i + 1][dx].query(max(dx, y), MAXY);

                dp[i][y][dx] = max(dp[i][y][dx], left_of_dx + preso);
                dp[i][y][dx] = max(dp[i][y][dx], right_of_dx_left_of_y + preso);
                dp[i][y][dx] = max(dp[i][y][dx], right_of_dx_right_of_y + preso);

                seg_no_ps[i][y].update(dx, dp[i][y][dx]);
                seg_ps[i][y].update(dx, dp[i][y][dx] - ps_grid[i][dx]);
                
            }
        }
    }

    ll res = 0;
    for (int i = 0; i < N; i ++) {
        for (int y = 0; y < MAXY; y ++) {
            for (int dx = 0; dx < MAXY; dx ++) {
                res = max(res, dp[i][y][dx]);
            }
        }
    }

    return res;
}


ll max_weights(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    bool all_even = 1;
    for (auto x : X) if (x % 2) all_even = 0;
    if (all_even) return sum_tutto(N, M, X, Y, W);

    bool minore_di_due = 1;
    for (auto x : X) if (x >= 2) minore_di_due = 0;
    if (minore_di_due) return res_minore_di_due(N, M, X, Y, W);

    bool y_zero = 1;
    for (auto y : Y) if (y > 0) y_zero = 0;
    if (y_zero) return res_y_zero(N, M, X, Y, W);

    return cubic_seg(N, M, X, Y, W);
}

Compilation message

fish.cpp: In function 'long long int cubic_seg(int, int, std::vector<int>, std::vector<int>, std::vector<int>)':
fish.cpp:256:24: warning: unused variable 'right_of_dx_left_of_y' [-Wunused-variable]
  256 |                     ll right_of_dx_left_of_y = seg_ps[i + 1][dx].query(dx, y) + ps_grid[i + 1][y];
      |                        ^~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 14 ms 4444 KB Output is correct
2 Correct 17 ms 5556 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 57 ms 17132 KB Output is correct
6 Correct 57 ms 17492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 34 ms 10888 KB Output is correct
3 Correct 41 ms 13268 KB Output is correct
4 Correct 15 ms 4444 KB Output is correct
5 Correct 20 ms 5684 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 16 ms 6748 KB Output is correct
13 Correct 20 ms 8004 KB Output is correct
14 Correct 19 ms 6748 KB Output is correct
15 Correct 18 ms 7516 KB Output is correct
16 Correct 17 ms 6844 KB Output is correct
17 Correct 19 ms 7508 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 2 ms 2652 KB Output is correct
3 Correct 12 ms 5276 KB Output is correct
4 Correct 8 ms 4568 KB Output is correct
5 Correct 21 ms 7772 KB Output is correct
6 Correct 16 ms 7260 KB Output is correct
7 Correct 18 ms 7772 KB Output is correct
8 Correct 20 ms 7764 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1624 KB Output is correct
2 Correct 1 ms 3164 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 432 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Incorrect 1 ms 1372 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1624 KB Output is correct
2 Correct 1 ms 3164 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 432 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Incorrect 1 ms 1372 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1624 KB Output is correct
2 Correct 1 ms 3164 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 432 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Incorrect 1 ms 1372 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 2 ms 2652 KB Output is correct
3 Correct 12 ms 5276 KB Output is correct
4 Correct 8 ms 4568 KB Output is correct
5 Correct 21 ms 7772 KB Output is correct
6 Correct 16 ms 7260 KB Output is correct
7 Correct 18 ms 7772 KB Output is correct
8 Correct 20 ms 7764 KB Output is correct
9 Execution timed out 1100 ms 2097152 KB Time limit exceeded
10 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 14 ms 4444 KB Output is correct
2 Correct 17 ms 5556 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 57 ms 17132 KB Output is correct
6 Correct 57 ms 17492 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 34 ms 10888 KB Output is correct
9 Correct 41 ms 13268 KB Output is correct
10 Correct 15 ms 4444 KB Output is correct
11 Correct 20 ms 5684 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 344 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 16 ms 6748 KB Output is correct
19 Correct 20 ms 8004 KB Output is correct
20 Correct 19 ms 6748 KB Output is correct
21 Correct 18 ms 7516 KB Output is correct
22 Correct 17 ms 6844 KB Output is correct
23 Correct 19 ms 7508 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 2 ms 2652 KB Output is correct
26 Correct 12 ms 5276 KB Output is correct
27 Correct 8 ms 4568 KB Output is correct
28 Correct 21 ms 7772 KB Output is correct
29 Correct 16 ms 7260 KB Output is correct
30 Correct 18 ms 7772 KB Output is correct
31 Correct 20 ms 7764 KB Output is correct
32 Correct 1 ms 1624 KB Output is correct
33 Correct 1 ms 3164 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 344 KB Output is correct
36 Correct 0 ms 432 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Incorrect 1 ms 1372 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
40 Halted 0 ms 0 KB -