Submission #1081817

# Submission time Handle Problem Language Result Execution time Memory
1081817 2024-08-30T11:32:32 Z vuavisao Chase (CEOI17_chase) C++14
100 / 100
314 ms 410708 KB
#include <bits/stdc++.h>
#pragma GCC optimize("O3", "unroll-loops")
using namespace std;

using ll = long long;

const int N = 100'000 + 1;

int n, breads;
int pigeons[N];
vector<int> g[N];

namespace sub1 {
	bool check() {
		return (n <= 10);
	}

	int parent[N];
	ll curPigeons[N];

	ll getDiff(int u, ll cur) {
		ll after = 0;
		while (u != 0) {
			after += curPigeons[u];
			u = parent[u];
		}
		return abs(after - cur);
	}

	ll dfs(int u, ll cur, int use) {
		ll res = 0;
		// doesn't drop the breadcrumb
		cur += curPigeons[u];
		res = max(res, getDiff(u, cur));
		for (const auto& v : g[u]) {
			if (v == parent[u]) continue;
			parent[v] = u;
			res = max(res, dfs(v, cur, use));
		}

		// drop the breadcrumb
		if (use < breads) {
			vector<ll> oldPigeons(n + 1, 0);
			oldPigeons[u] = curPigeons[u];
			for (const auto& v : g[u]) {
				oldPigeons[v] = curPigeons[v];
			}
			for (const auto& v : g[u]) {
				curPigeons[u] += curPigeons[v];
				curPigeons[v] = 0;
			}

			res = max(res, getDiff(u, cur));
			
			for (const auto& v : g[u]) {
				if (v == parent[u]) continue;
				parent[v] = u;
				res = max(res, dfs(v, cur, use + 1));
			}

			curPigeons[u] = oldPigeons[u];
			for (const auto& v : g[u]) {
				curPigeons[v] = oldPigeons[v];
			}
		}
		return res;
	}

	void solve() {
		ll res = 0;
		for (int root = 1; root <= n; ++ root) {
			for (int u = 1; u <= n; ++ u) {
				curPigeons[u] = pigeons[u];
				parent[u] = 0;
			}
			res = max(res, dfs(root, 0, 0));
		}
		cout << res;
	}
}

namespace sub2 {
	bool check() {
		return (n <= 1'000);
	}

	ll dp[N][110];

	void dfs(int u, int p) {
		ll bonus = -pigeons[p];
		for (const auto& v : g[u]) {
			bonus += pigeons[v];
		}
		for (int use = breads - 1; use >= 0; -- use) {
			dp[u][use + 1] = max(dp[u][use + 1], dp[u][use] + bonus);
		}
		for (const auto& v : g[u]) {
			if (v == p) continue;
			for (int use = 0; use <= breads; ++ use) {
				dp[v][use] = max(dp[v][use], dp[u][use]);
			}
			dfs(v, u);
		}
	}

	ll calc(int root) {
		for (int u = 0; u <= n + 1; ++ u) {
			for (int use = 0; use <= breads + 1; ++ use) {
				dp[u][use] = 0;
			}
		}
		dfs(root, 0);
		ll res = 0;
		for (int u = 1; u <= n; ++ u) {
			for (int use = 0; use <= breads; ++ use) {
				res = max(res, dp[u][use]);
			}
		}
		return res;
	}

	void solve() {
		ll res = 0;
		for (int root = 1; root <= n; ++ root) {
			res = max(res, calc(root));
		}
		cout << res;
	}
}

namespace sub4 {
	pair<ll, int> dpOut[N][101][2];
	ll dpIn[N][101];
	ll cost[N];
	ll res = 0;

	ll getCost(int u, int p) {
		return cost[u] - pigeons[p];
	}

	void update(pair<ll, int> cur[], pair<ll, int> val) {
		pair<ll, int> old = cur[0];
		if (val.first > cur[0].first) {
			cur[0] = val;
			cur[1] = old;
		}
		else {
			cur[1] = max(cur[1], val);
		}
	}

	void dfsInOut(int u, int p) {
		// out is u can accept len >= 1
		for (int use = 0; use <= breads; ++ use) {
			dpOut[u][use][0] = (use == 0 ? make_pair(0ll, u) : make_pair(getCost(u, 0), u));
		}
		// in is u can accept len >= 2
		for (int use = 0; use <= breads; ++ use) {
			dpIn[u][use] = (use == 0 ? 0ll : getCost(u, p));
		}

		for (const auto& v : g[u]) {
			if (v == p) continue;
			dfsInOut(v, u);

			// case out:
			// prefix u = v
			for (int use = 0; use <= breads; ++ use) {
				pair<ll, int> cur = make_pair(dpOut[v][use][0].first, v);
				if (use > 0) {
					// small trick (we can replace dpOut with 3 members but the memory doesn't allow us to do this)
					cur.first = max(cur.first, dpOut[v][use - 1][0].first + getCost(u, v));
				}
				update(dpOut[u][use], cur);
			}

			// case in:
			// prefix v = u
			for (int use = 0; use <= breads; ++ use) {
				ll cur = dpIn[v][use];
				dpIn[u][use] = max(dpIn[u][use], cur);
				if (use < breads) {
					cur += getCost(u, p);
					dpIn[u][use + 1] = max(dpIn[u][use + 1], cur);
				}
			}
		}

		// for (int use = 1; use <= breads; ++ use) {
		// 	update(dpOut[u][use], dpOut[u][use - 1][0]);
		// 	dpIn[u][use] = max(dpIn[u][use], dpIn[u][use - 1]);
		// }
		for (const auto& v : g[u]) {
			if (v == p) continue;
			
			for (int useOut = 0; useOut <= breads; ++ useOut) {
				int useIn = breads - useOut;
				// if (dpOut[u][useOut][0].second == dpOut[u][useOut][1].second) {
				// 	cerr << u << ' ' << dpOut[u][useOut][0] << '\n';
				// 	cerr << u << ' ' << dpOut[u][useOut][1] << '\n';
				// }
				for (int typeOut = 0; typeOut < 2; ++ typeOut) {
					if (dpOut[u][useOut][typeOut].second == v) continue;
					res = max(res, dpOut[u][useOut][typeOut].first + dpIn[v][useIn]);
				}
			}
		}
		for (int useOut = 0; useOut <= breads; ++ useOut) {
			res = max(res, dpOut[u][useOut][0].first);
		}
		for (int useIn = 0; useIn <= breads; ++ useIn) {
			res = max(res, dpIn[u][useIn]);
		}
	}

	void solve() {
		for (int u = 1; u <= n; ++ u) {
			for (const auto& v : g[u]) {
				cost[v] += pigeons[u];
			}
		}
		dfsInOut(1, 0);
		cout << res;
	}

}

int32_t main() {
	std::ios_base::sync_with_stdio(false);
	std::cin.tie(nullptr); std::cout.tie(nullptr);
	cin >> n >> breads;
	for (int u = 1; u <= n; ++ u) cin >> pigeons[u];
	for (int i = 2; i <= n; ++ i) {
		int u, v; cin >> u >> v;
		g[u].push_back(v);
		g[v].push_back(u);
	}
	// if (sub1::check()) {
	// 	sub1::solve();
	// 	return 0;
	// }
	// if (sub2::check()) {
	// 	sub2::solve();
	// 	return 0;
	// }
	// cout << sub2::calc(1);
	sub4::solve();
	return (0 ^ 0);
}

/// Code by vuavisao
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2652 KB Output is correct
2 Correct 1 ms 2652 KB Output is correct
3 Correct 1 ms 2652 KB Output is correct
4 Correct 1 ms 2652 KB Output is correct
5 Correct 1 ms 2652 KB Output is correct
6 Correct 1 ms 2652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2652 KB Output is correct
2 Correct 1 ms 2652 KB Output is correct
3 Correct 1 ms 2652 KB Output is correct
4 Correct 1 ms 2652 KB Output is correct
5 Correct 1 ms 2652 KB Output is correct
6 Correct 1 ms 2652 KB Output is correct
7 Correct 4 ms 6748 KB Output is correct
8 Correct 3 ms 6848 KB Output is correct
9 Correct 3 ms 6748 KB Output is correct
10 Correct 4 ms 6748 KB Output is correct
11 Correct 3 ms 6784 KB Output is correct
12 Correct 3 ms 6748 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 300 ms 410708 KB Output is correct
2 Correct 277 ms 410544 KB Output is correct
3 Correct 249 ms 404704 KB Output is correct
4 Correct 183 ms 404564 KB Output is correct
5 Correct 296 ms 404560 KB Output is correct
6 Correct 293 ms 404500 KB Output is correct
7 Correct 296 ms 404560 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2652 KB Output is correct
2 Correct 1 ms 2652 KB Output is correct
3 Correct 1 ms 2652 KB Output is correct
4 Correct 1 ms 2652 KB Output is correct
5 Correct 1 ms 2652 KB Output is correct
6 Correct 1 ms 2652 KB Output is correct
7 Correct 4 ms 6748 KB Output is correct
8 Correct 3 ms 6848 KB Output is correct
9 Correct 3 ms 6748 KB Output is correct
10 Correct 4 ms 6748 KB Output is correct
11 Correct 3 ms 6784 KB Output is correct
12 Correct 3 ms 6748 KB Output is correct
13 Correct 300 ms 410708 KB Output is correct
14 Correct 277 ms 410544 KB Output is correct
15 Correct 249 ms 404704 KB Output is correct
16 Correct 183 ms 404564 KB Output is correct
17 Correct 296 ms 404560 KB Output is correct
18 Correct 293 ms 404500 KB Output is correct
19 Correct 296 ms 404560 KB Output is correct
20 Correct 314 ms 404564 KB Output is correct
21 Correct 169 ms 404560 KB Output is correct
22 Correct 313 ms 404372 KB Output is correct
23 Correct 180 ms 404560 KB Output is correct
24 Correct 309 ms 404504 KB Output is correct
25 Correct 257 ms 404396 KB Output is correct
26 Correct 296 ms 410708 KB Output is correct
27 Correct 305 ms 410596 KB Output is correct