Submission #1078595

#TimeUsernameProblemLanguageResultExecution timeMemory
1078595myst6Soccer Stadium (IOI23_soccer)C++17
0 / 100
4588 ms9300 KiB
#include <bits/stdc++.h> using namespace std; bool dp[4][2005][2005]; /* let's consider the bottom edge we must be able to reach all other cells with an up kick then left kick a rectangle is a valid field because yes if any two filled positions on same row or col have a tree between them then no if we fill in all empty spaces and consider that whole square we see that the trees form either strict decreasing or strict increasing thingies xx.. xxx. .xxx ..xx still bad consider top-left one it needs to either have access to all rows or all cols xxxx xxxx .xxx ..xx now good xxxx .xxx ..xx .... still good so, one side needs to be completely filled in if we can solve where the top side is completely full, then rotate 90deg 4 times xxxx .xxx ..xx ...x now, restriction on rest is? it must be increasing then decreasing section xxxxxxxx .xxxxx.x ..xxx..x ...xx..x let's say we have down[i][j] : how far down we can go from here for a given row, let's say position k is the local maximum then we do a greedy on both sides to calculate scores so O(n^2) per row so O(n^3) in total where does this account for something like x x xxxxx x x x xxx xxxxx x x I think in addition to the backbone and stalagmites we can have one prong upwards xxxxx xxx xx x x x xxxxx xxx xx x i think the prong needs to be above the splitting point, too otherwise, there's a column we can't reach what if the local maximum isn't strict? can we have another? xx xx xxxxx xxx xxx xx yes we can the stuff on top needs to also have this same pattern though x xx xx xxxxx xxx xxx xx like this is fine but it can't go down then up again x x xxx xxx xxxxx xxx xxx xxx we need to iterate through the heights of the local max now so now it's O(n^4) */ const int MAXN = 2000; int down[MAXN][MAXN]; int up[MAXN][MAXN]; int solve(int N, vector<vector<int>> F) { for (int i=0; i<N; i++) { for (int j=0; j<N; j++) { // go as far down as possible in O(n^3) for (int k=i; k<N; k++) { if (F[k][j] == 1) break; down[i][j] = k-i+1; } // go as far up as possible in O(n^3) for (int k=i; k>=0; k--) { if (F[k][j] == 1) break; up[i][j] = i-k+1; } } } int best = 0; for (int i=0; i<N; i++) { for (int j=0; j<N; j++) { if (F[i][j] == 1) continue; // choose position (i, j) as the splitting point on row i for (int h=1; h<=down[i][j]; h++) { // choose its height down below to be h int ans = h; // go left on bottom int L = j; { int curr = h; bool flag = true; for (int k=j-1; k>=0; k--) { if (F[i][k] == 1) break; if (down[i][k] >= curr && flag) L = k; if (down[i][k] < curr) flag = false; curr = min(curr, down[i][k]); ans += curr; } } // go right on bottom int R = j; { int curr = h; bool flag = true; for (int k=j+1; k<N; k++) { if (F[i][k] == 1) break; if (down[i][k] >= curr && flag) R = k; if (down[i][k] < curr) flag = false; curr = min(curr, down[i][k]); ans += curr; } } // choose splitting point on top to be j2 int best2 = 0; for (int j2=L; j2<=R; j2++) { int ans2 = up[i][j] - 1; // go left on top { int curr = up[i][j]; for (int k=j-1; k>=0; k--) { if (F[i][k] == 1) break; curr = min(curr, up[i][k]); ans2 += curr - 1; } } // go right on top { int curr = up[i][j]; for (int k=j+1; k<N; k++) { if (F[i][k] == 1) break; curr = min(curr, up[i][k]); ans2 += curr - 1; } } best2 = max(best2, ans2); } // ans += best2; best = max(best, ans); } } } return best; } vector<vector<int>> rotate(int N, vector<vector<int>> F) { vector<vector<int>> G(N, vector<int>(N)); for (int i=0; i<N; i++) { for (int j=0; j<N; j++) { G[i][j] = F[N-1-j][i]; } } return G; } int biggest_stadium(int N, vector<vector<int>> F) { int best = 0; for (int i=0; i<4; i++) { best = max(best, solve(N, F)); F = rotate(N, F); } return best; } /* 5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...