Submission #1078560

#TimeUsernameProblemLanguageResultExecution timeMemory
1078560BoggyManBalloons (CEOI11_bal)C++14
100 / 100
123 ms10128 KiB
#include <bits/stdc++.h> using namespace std; typedef long long int ll; typedef unsigned long long int ull; typedef pair<int, int> pip; typedef pair<ll, ll> plip; typedef vector<int> vi; typedef vector<ll> vli; typedef vector<vi> vvi; typedef vector<vli> vvli; typedef vector<pip> vpip; typedef unordered_set<ll> usi; typedef set<ll> si; typedef priority_queue<ll> pq; typedef unordered_map<ll, ll> umpi; typedef map<ll, ll> mpi; typedef long long int ll; #define mod 1000000007 #define nl "\n" #define For(i, a, b) for (int i = (a); i < (b); i++) #define Rep(i, n) for (int i = 0; i < (n); i++) #define ALL(v) (v).begin(), (v).end() #define Be(v) (v).begin() #define Ee(v) (v).end() #define Pb push_back #define Mp make_pair #define Sz(v) ((int)(v).size()) #define F first #define S second #define pr(v) cout<<v<<endl; const int MOD = 1000000007; // void file() { // #ifndef ONLINE_JUDGE // freopen("input.txt", "r", stdin); // freopen("output.txt", "w", stdout); // #endif // } // class SegmentTree { ll *seg; ll *lazy; public : SegmentTree(ll n) { // Maximum Size Of Tree could be 4n only seg = new ll[4*n + 1]; lazy = new ll[4*n + 1]; } // Time Complexity Of Build : O(4N) == O(N) !!! void BuildTree(ll arr[], ll i, ll low, ll high) { if(low == high) { seg[i] = arr[low]; return; } ll mid = low + (high - low) / 2; // Left Child BuildTree(arr, 2 * i + 1, low, mid); // Right Child BuildTree(arr, 2 * i + 2, mid + 1, high); // Sum Of Two seg[i] = seg[2 * i + 1] + seg[2 * i + 2]; } // Query Time Complexity : O(logN) ll query(ll ind, ll l, ll r, ll low, ll high) { // If Update is Remaining, First Update The Values if(lazy[ind] != 0) { seg[ind] += (high - low + 1) * lazy[ind]; // If it is a leaf node, it will not have childrens if(low != high) { lazy[2 * ind + 1] += lazy[ind]; lazy[2 * ind + 2] += lazy[ind]; } lazy[ind] = 0; } // No Overlap // l r low high or low high l r if(high < l || low > r) return 0; // Complete Overlap // l low high r if(high <= r && low >= l) return seg[ind]; // Partial Overlap ll mid = low + (high - low) / 2; ll left = query(2 * ind + 1, l, r, low, mid); ll right = query(2 * ind + 2, l, r, mid + 1, high); return left + right; } // Update Time Complexity : O(logN) void update(ll i, ll val, ll low, ll high, ll ind) { // If we found the required Node if(low == high) { seg[ind] = val; return; } ll mid = low + (high - low)/2; // If required node is left to mid, // Move To Left Child Else Move To Right Child if(i <= mid) update(i, val, low, mid, 2 * ind + 1); else update(i, val, mid + 1, high, 2 * ind + 2); // Since, One Of The Child's Value is Updated // We have to find minimum again !!! seg[ind] = seg[2 * ind + 1] + seg[2 * ind + 2]; } void updateRange(ll l, ll r, ll val, ll low, ll high, ll ind) { // First Update The Remaining Updates // Lazy Propagate To The Child if(lazy[ind] != 0) { seg[ind] += (high - low + 1) * lazy[ind]; // If it is a leaf node, it will not have childrens if(low != high) { lazy[2 * ind + 1] += lazy[ind]; lazy[2 * ind + 2] += lazy[ind]; } lazy[ind] = 0; } // No Overlap // l r low high or low high l r if(high < l || low > r) return; // Complete Overlap // l low high r if(high <= r && low >= l) { seg[ind] += (high - low + 1) * val; if(low != high) { lazy[2 * ind + 1] += val; lazy[2 * ind + 2] += val; } return; } ll mid = low + (high - low)/2; // Partial Overlap ke case me left and right dono update karenge updateRange(l, r, val, low, mid, 2 * ind + 1); updateRange(l, r, val, mid + 1, high, 2 * ind + 2); // Since, One Of The Child's Value is Updated // We have to find minimum again !!! seg[ind] = seg[2 * ind + 1] + seg[2 * ind + 2]; } }; struct fenwick { vector<ll> fn; ll n; void init(ll n) { this->n = n + 1; fn.resize(this->n, 0); } void add(ll x, ll y) { x++; while (x < n) { fn[x] += y; x += (x & (-x)); } } ll sum(ll x) { x++; ll ans = 0; while (x) { ans += fn[x]; x -= (x & (-x)); } return ans; } ll sum(ll l, ll r) { return sum(r) - sum(l - 1); } }; class DisjointSet { vector<ll> rank, parent, size; public: DisjointSet(ll n) { rank.resize(n + 1, 0); parent.resize(n + 1); size.resize(n + 1, 1); for(ll i = 1; i <= n; i++) parent[i] = i; } void unionByRank(ll x, ll y) { ll par_x = findPar(x); ll par_y = findPar(y); if(par_x == par_y) return; if(rank[par_x] < rank[par_y]) { parent[par_x] = par_y; } else if(rank[par_y] < rank[par_x]) { parent[par_y] = par_x; } else { parent[par_x] = par_y; rank[par_y]++; } } void unionBySize(ll x, ll y) { ll par_x = findPar(x); ll par_y = findPar(y); if(par_x == par_y) return; if(size[par_x] < size[par_y]) { parent[par_x] = par_y; size[par_y] += size[par_x]; } else { parent[par_y] = par_x; size[par_x] += size[par_y]; } } ll findPar(ll x) { if(parent[x] == x) return x; return parent[x] = findPar(parent[x]); } }; ll binpow(ll a,ll b) { ll ans = 1; while(b > 0) { if((b & 1) == 1) ans *= a; a *= a; b = b >> 1; } return ans; } ll binpowmod(ll a,ll b) { ll ans = 1; while(b > 0) { if((b & 1) == 1) { ans *= a; ans %= mod; } a *= a; a %= mod; b = b >> 1; } return ans; } ll gcd(ll a,ll b) { if(b == 0) return a; return gcd(b, a % b); } ll lcm(ll a,ll b) { return (a / gcd(a,b)) * b; } const ll MAX = 2e5 + 7; vector<ll> fact(MAX); ll add(ll a, ll b) { return (a + b) % mod; } ll sub(ll a, ll b) { return ((a - b) % mod + mod) % mod; } ll mult(ll a, ll b) { return ((a * b) % mod); } ll inv(ll a) { return binpowmod(a, mod - 2); } ll divide(ll a, ll b) { return mult(a, inv(b)); } ll nCr(ll n, ll r) { if(n < r) return 0; return divide(fact[n], mult(fact[r], fact[n - r])); } void preFactorial() { fact[0] = 1; for(ll i = 1; i < MAX; i++) fact[i] = mult(i, fact[i - 1]); } bool isVowel(char c) { if(c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u') return true; if(c == 'A' || c == 'E' || c == 'I' || c == 'O' || c == 'U') return true; return false; } bool isSame(ll n, ll arr[]) { for(ll i = 0; i < n; i++) { if(arr[i] != arr[0]) return false; } return true; } bool isSame(ll n, vector<ll> &arr) { for(ll i = 0; i < n; i++) { if(arr[i] != arr[0]) return false; } return true; } bool isSorted(ll n, ll arr[]) { for(ll i = 1; i < n; i++) { if(arr[i] < arr[i - 1]) return false; } return true; } bool isSorted(ll n, vector<ll> &arr) { for(ll i = 1; i < n; i++) { if(arr[i] < arr[i - 1]) return false; } return true; } void inputArr(ll n, ll arr[]) { for(ll i = 0; i < n; i++) cin >> arr[i]; } void inputArr(ll n, vector<ll> &arr) { ll x; for(ll i = 0; i < n; i++) { cin >> x; arr.push_back(x); } } void printArr(ll n, ll arr[]) { for(ll i = 0; i < n; i++) cout << arr[i] << " "; cout << nl; } void printArr(ll n, vector<ll> &arr) { for(ll i = 0; i < n; i++) cout << arr[i] << " "; cout << nl; } ll sumOfArr(ll n, ll arr[]) { ll ans = 0; for(ll i = 0; i < n; i++) ans += arr[i]; return ans; } ll sumOfArr(ll n, vector<ll> &arr) { ll ans = 0; for(ll i = 0; i < n; i++) ans += arr[i]; return ans; } bool isPrime(ll n) { if(n == 1) return false; for(ll i = 2; i <= sqrt(n); i++) { if(n % i == 0) return false; } return true; } ll countSetBits(ll n) { ll ans = 0; while(n) { ans++; n = n & (n - 1); } return ans; } vector<ll> primeFactorization(ll n) { vector<ll> factors; for(ll i = 2; i * i <= n; i++) { ll cnt = 0; while(n % i == 0) { cnt++; n /= i; factors.push_back(i); } } if(n > 1) factors.push_back(n); return factors; } bool isPalindrome(string s) { ll i = 0; ll j = s.size() - 1; while(i <= j) { if(s[i] != s[j]) return false; i++; j--; } return true; } bool isbiparite ( vector<vector<int>>&graph, vector<int> &color,int c , int node) { color[ node ] = c; for( const auto & g : graph[node]) { if(!color[g]) { if(!isbiparite(graph,color,!c,g))return false; } else if( c==color[g])return false; } return true; } // double chola ( pair <double , double> pp , double c2) { // double cd = (pp.F - c2)* ( pp.F - c2 ); // cd = cd/ pp.S; // cd /=4; // return cd; // } double chola (int curr, pair<double, double> prev , vector< pair< double, double> > & v) { double r = (v[curr].first - prev.first) * ((v[curr].first - prev.first)) / (4 * prev.second); return r; } void A() { int n ; cin>>n; vector< pair< double, double> > a( n ); For ( i , 0 ,n ) cin>>a[i].F>>a[i].S; double ans = a[ 0].S; cout <<fixed <<setprecision( 3 ); cout <<ans <<" "; stack < pair < double , double >> stk; stk.push( { a[ 0 ].F, a[ 0 ].S}); for ( int i = 1 ; i < n ;i++) { double R = a[ i].S; while ( !stk.empty() ) { double r = chola(i , stk.top(), a); R = min ( R , r); if( R >= stk.top().S ) { stk.pop(); continue; } else break; } cout<<fixed<<setprecision( 3 ); cout<<R <<" "; stk.push({ a[i].F , R}); } } void B() { } void C() { } void D() { } void E() { } int main() { cin.tie( nullptr); ios_base::sync_with_stdio( false); int test = 1; // cin>>test; while (test--) { A(); } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...