Submission #1077777

# Submission time Handle Problem Language Result Execution time Memory
1077777 2024-08-27T09:04:42 Z vjudge1 Werewolf (IOI18_werewolf) C++17
15 / 100
4000 ms 105792 KB
#include "werewolf.h"
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC target("avx,avx2")
 
using namespace std;
 
using vi = vector<int>;
using ii = pair<int, int>;
constexpr int BUCKET = 200;
using bm = bitset<BUCKET>;

 
struct DSU {
    vi e, mi, ma;
    DSU(int n) : e(n, -1), mi(n), ma(n) {
        iota(mi.begin(), mi.end(), 0);
        iota(ma.begin(), ma.end(), 0);
    }
 
    int repr(int u) {
        while(e[u] >= 0) u = e[u];
        return u;
    }
 
    bool join(int u, int v) {
        u = repr(u);
        v = repr(v);
        if(u == v) return false;
        if(e[u] >= e[v]) swap(u, v);
        mi[u] = min(mi[u], mi[v]);
        ma[u] = max(ma[u], ma[v]);
        e[u] += e[v];
        e[v] = u;
        return true;
    }
 
    bool same(int u, int v) {
        return repr(u) == repr(v);
    }
 
    ii seg(int u) { 
        u = repr(u);
        return make_pair(mi[u], ma[u]);
    }
};
 
struct BinLift {
    int n;
    vector<vi> A;
    BinLift(vi V) {
        n = int(V.size());
        A.push_back(V);
        for(int k = 1; (1 << k) <= n; ++k) {
            A.push_back(A.back());
            for(int i = 0; i < n; ++i)
                if(A[k - 1][i] < 0 || A[k - 1][i] >= n);
                else A[k][i] = A[k - 1][A[k - 1][i]];
        }
    }
 
    int lift(int u, int k) {
        return A[k][u];
    }
};
 
 
vi check_validity(int n, vi X, vi Y, vi S, vi E, vi L, vi R) {
    int q = (int)S.size(), m = (int)X.size();
    vector<vi> Lg(n);
    for(int i = 0; i < m; ++i) {
        Lg[X[i]].push_back(Y[i]);
        Lg[Y[i]].push_back(X[i]);
    }
 
    DSU St(n);
    vi GEpar(n, n), GSpar(n, -1);
    vector<vi> GE(n), GS(n);
    for(int i = 0; i < n; ++i) {
        for(auto it : Lg[i])
            if(it < i) {
                auto [mi, ma] = St.seg(it);
                if(St.join(it, i)) {
                    GE[i].push_back(ma);
                    GEpar[ma] = i;
                }
            }
    }
 
    DSU Dr(n);
    for(int i = n - 1; i >= 0; --i) {
        for(auto it : Lg[i]) {
            if(it > i) {
                auto [mi, ma] = Dr.seg(it);
                if(Dr.join(it, i)) {
                    GS[i].push_back(mi);
                    GSpar[mi] = i;
                }
            }
        }
    }
 
    vector<vi> G(n);
    for(int i = 0; i < n; ++i) {
        copy(GS[i].begin(), GS[i].end(), back_inserter(G[i]));
        for(auto it : GE[i])
            G[it].push_back(i);
    }
 
    BinLift BLS(GSpar), BLE(GEpar);
 
    auto reprS = [&](int u, int lim) {
        for(int k = int(BLS.A.size()) - 1; k >= 0; --k)
            if(BLS.lift(u, k) >= lim) u = BLS.lift(u, k);
        return u;
    };
 
    auto reprE = [&](int u, int lim) {
        for(int k = int(BLE.A.size()) - 1; k >= 0; --k)
            if(BLE.lift(u, k) <= lim) u = BLE.lift(u, k);
        return u;
    };
 
    for(int nr = 0; nr < q; ++nr) {
        S[nr] = reprS(S[nr], L[nr]);
        E[nr] = reprE(E[nr], R[nr]);
    }
 
    vi Re(q, 0);
 
    vector<bm> ValS(n), ValE(n);
    for(int id = 0; id <= (q - 1) / BUCKET; ++id) {
        int st = id * BUCKET, dr = st + BUCKET;
        dr = min(dr, q);
        for(int i = 0; i < n; ++i) {
            ValS[i].reset();
            ValE[i].reset();
        }
        for(int i = st; i < dr; ++i) {
            ValE[E[i]][i - st] = 1;
            ValS[S[i]][i - st] = 1;
        }
        for(int i = 0; i < n; ++i)
            for(auto it : GS[i]) ValS[it] |= ValS[i];
        bm v;
        v.reset();
        for(int i = n - 1; i >= 0; --i) {
            for(auto it : GE[i]) ValE[it] |= ValE[i]; 
            v |= (ValE[i] & ValS[i]);
        }
        for(int i = st; i < dr; ++i) {
            Re[i] = v[i - st];
        }
    }
    return Re;
}

# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 4 ms 1628 KB Output is correct
11 Correct 3 ms 1628 KB Output is correct
12 Correct 3 ms 1532 KB Output is correct
13 Correct 3 ms 1628 KB Output is correct
14 Correct 3 ms 1616 KB Output is correct
15 Correct 7 ms 1800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3721 ms 98116 KB Output is correct
2 Correct 3741 ms 105792 KB Output is correct
3 Correct 3854 ms 105536 KB Output is correct
4 Execution timed out 4065 ms 105600 KB Time limit exceeded
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 4 ms 1628 KB Output is correct
11 Correct 3 ms 1628 KB Output is correct
12 Correct 3 ms 1532 KB Output is correct
13 Correct 3 ms 1628 KB Output is correct
14 Correct 3 ms 1616 KB Output is correct
15 Correct 7 ms 1800 KB Output is correct
16 Correct 3721 ms 98116 KB Output is correct
17 Correct 3741 ms 105792 KB Output is correct
18 Correct 3854 ms 105536 KB Output is correct
19 Execution timed out 4065 ms 105600 KB Time limit exceeded
20 Halted 0 ms 0 KB -