#include <bits/stdc++.h>
using namespace std;
#define dbg(x) x
#define prt(x) dbg(cerr << x)
#define pv(x) dbg(cerr << #x << " = " << x << '\n')
#define pv2(x) dbg(cerr << #x << " = " << x.first << ',' << x.second << '\n')
#define parr(x) dbg(prt(#x << " = { "); for (auto y : x) prt(y << ' '); prt("}\n");)
#define parr2(x) dbg(prt(#x << " = { "); for (auto [y, z] : x) prt(y << ',' << z << " "); prt("}\n");)
#define parr2d(x) dbg(prt(#x << ":\n"); for (auto arr : x) {parr(arr);} prt('\n'));
#define parr2d2(x) dbg(prt(#x << ":\n"); for (auto arr : x) {parr2(arr);} prt('\n'));
/*
build 1 or 2 bridges
add to baseline of sum of all distances driven without crossing bridge + n
then only consider people crossing
k=1:
minimize the sum of all abs(s[i] - x) + abs(t[i] - x)
one of the given locs is optimal
so here treat all s[i] and t[i] the same, sort, etc.
k=2:
starts > lb and ends < rb:
lb + rb <= x + y --> use x
else --> use y
that actually applies to everything
so you can already just sort by sum
and binary search the right bound
given the left bound
but how do you compare between left bounds
okok the hint is you just sort by sum
just iterate over the n or smth breakpoints & look for the min with 2p or smth...
HINT: the median is always optimal
*/
int main() {
ios::sync_with_stdio(0); cin.tie(0);
int k, n;
cin >> k >> n;
vector<array<int, 2>> a;
long long bsl = 0;
for (int i = 0; i < n; i++) {
char c1, c2; int i1, i2;
cin >> c1 >> i1 >> c2 >> i2;
if (c1 == c2) {
bsl += abs(i2 - i1);
} else {
if (i2 < i1) swap(i1, i2);
a.push_back({i1, i2});
bsl++;
}
}
n = (int) a.size();
if (n == 0) {
cout << bsl << '\n';
return 0;
}
vector<int> b;
for (int i = 0; i < n; i++) {
b.push_back(a[i][0]); b.push_back(a[i][1]);
}
sort(b.begin(), b.end());
if (k == 1) {
long long sum = 0;
for (int i = 0; i < 2 * n; i++) {
sum += b[i] - b[0];
}
long long best = sum;
for (int i = 1; i < 2 * n; i++) {
sum += (long long) i * (b[i] - b[i - 1]);
sum -= (long long) (2 * n - i) * (b[i] - b[i - 1]);
best = min(best, sum);
}
cout << best + bsl << '\n';
} else {
sort(a.begin(), a.end(), [&] (array<int, 2> a1, array<int, 2> a2) {
return a1[0] + a1[1] < a2[0] + a2[1];
});
vector<vector<multiset<int>>> s(2, vector<multiset<int>>(2));
vector<vector<long long>> sum(2, vector<long long>(2, 0));
function<void(int, int)> ins = [&] (int i, int x) {
if (s[i][0].empty() || x <= *s[i][0].rbegin()) {
s[i][0].insert(x);
sum[i][0] += x;
if (s[i][0].size() > s[i][1].size() + 1) {
int mx = *s[i][0].rbegin();
s[i][0].erase(s[i][0].find(mx));
sum[i][0] -= mx;
s[i][1].insert(mx);
sum[i][1] += mx;
}
} else {
s[i][1].insert(x);
sum[i][1] += x;
if (s[i][1].size() > s[i][0].size()) {
int mn = *s[i][1].begin();
s[i][1].erase(s[i][1].find(mn));
sum[i][1] -= mn;
s[i][0].insert(mn);
sum[i][0] += mn;
}
}
};
function<void(int, int)> del = [&] (int i, int x) {
if (x <= *s[i][0].rbegin()) {
s[i][0].erase(s[i][0].find(x));
sum[i][0] -= x;
if (s[i][1].size() > s[i][0].size()) {
int mn = *s[i][1].begin();
s[i][1].erase(s[i][1].find(mn));
sum[i][1] -= mn;
s[i][0].insert(mn);
sum[i][0] += mn;
}
} else {
s[i][1].erase(s[i][1].find(x));
sum[i][1] -= x;
if (s[i][0].size() > s[i][1].size() + 1) {
int mx = *s[i][0].rbegin();
s[i][0].erase(s[i][0].find(mx));
sum[i][0] -= mx;
s[i][1].insert(mx);
sum[i][1] += mx;
}
}
};
function<long long(int)> cost = [&] (int i) {
if (s[i][0].empty()) return 0ll;
long long med = *s[i][0].rbegin();
return (med * (long long) s[i][0].size() - sum[i][0])
+ (sum[i][1] - med * (long long) s[i][1].size());
};
for (int i = 0; i < n; i++) {
ins(1, a[i][0]);
ins(1, a[i][1]);
}
long long best = cost(1);
for (int i = 0; i < n - 1; i++) {
del(1, a[i][0]);
del(1, a[i][1]);
ins(0, a[i][0]);
ins(0, a[i][1]);
best = min(best, cost(0) + cost(1));
}
cout << best + bsl << '\n';
}
}
/*
any observations help
check every line
IF YOUR LINES AREN'T WRONG
CHECK IF YOUR LINES ARE IN THE RIGHT ORDER
NEVER GIVE UP
*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
1 ms |
348 KB |
Output is correct |
6 |
Correct |
1 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
1 ms |
348 KB |
Output is correct |
9 |
Correct |
1 ms |
348 KB |
Output is correct |
10 |
Correct |
0 ms |
348 KB |
Output is correct |
11 |
Correct |
1 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
1 ms |
468 KB |
Output is correct |
5 |
Correct |
1 ms |
348 KB |
Output is correct |
6 |
Correct |
1 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
0 ms |
348 KB |
Output is correct |
9 |
Correct |
1 ms |
348 KB |
Output is correct |
10 |
Correct |
1 ms |
348 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
15 ms |
3544 KB |
Output is correct |
13 |
Correct |
32 ms |
4872 KB |
Output is correct |
14 |
Correct |
21 ms |
3800 KB |
Output is correct |
15 |
Correct |
21 ms |
3124 KB |
Output is correct |
16 |
Correct |
17 ms |
4312 KB |
Output is correct |
17 |
Correct |
21 ms |
4980 KB |
Output is correct |
18 |
Correct |
23 ms |
4568 KB |
Output is correct |
19 |
Correct |
28 ms |
5032 KB |
Output is correct |
20 |
Correct |
21 ms |
4564 KB |
Output is correct |
21 |
Correct |
27 ms |
4824 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
1 ms |
344 KB |
Output is correct |
3 |
Correct |
1 ms |
344 KB |
Output is correct |
4 |
Correct |
1 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
0 ms |
456 KB |
Output is correct |
9 |
Correct |
1 ms |
348 KB |
Output is correct |
10 |
Correct |
0 ms |
344 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
0 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
344 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
0 ms |
348 KB |
Output is correct |
9 |
Correct |
0 ms |
348 KB |
Output is correct |
10 |
Correct |
1 ms |
348 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
0 ms |
348 KB |
Output is correct |
13 |
Correct |
2 ms |
344 KB |
Output is correct |
14 |
Correct |
1 ms |
344 KB |
Output is correct |
15 |
Correct |
1 ms |
348 KB |
Output is correct |
16 |
Correct |
0 ms |
348 KB |
Output is correct |
17 |
Correct |
1 ms |
348 KB |
Output is correct |
18 |
Correct |
1 ms |
460 KB |
Output is correct |
19 |
Correct |
1 ms |
348 KB |
Output is correct |
20 |
Correct |
1 ms |
348 KB |
Output is correct |
21 |
Correct |
1 ms |
348 KB |
Output is correct |
22 |
Correct |
1 ms |
348 KB |
Output is correct |
23 |
Correct |
1 ms |
348 KB |
Output is correct |
24 |
Correct |
1 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
452 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
1 ms |
344 KB |
Output is correct |
9 |
Correct |
1 ms |
348 KB |
Output is correct |
10 |
Correct |
0 ms |
348 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
0 ms |
348 KB |
Output is correct |
13 |
Correct |
1 ms |
348 KB |
Output is correct |
14 |
Correct |
1 ms |
344 KB |
Output is correct |
15 |
Correct |
1 ms |
592 KB |
Output is correct |
16 |
Correct |
0 ms |
348 KB |
Output is correct |
17 |
Correct |
1 ms |
348 KB |
Output is correct |
18 |
Correct |
1 ms |
348 KB |
Output is correct |
19 |
Correct |
1 ms |
348 KB |
Output is correct |
20 |
Correct |
1 ms |
348 KB |
Output is correct |
21 |
Correct |
1 ms |
344 KB |
Output is correct |
22 |
Correct |
1 ms |
348 KB |
Output is correct |
23 |
Correct |
1 ms |
348 KB |
Output is correct |
24 |
Correct |
1 ms |
348 KB |
Output is correct |
25 |
Correct |
146 ms |
11992 KB |
Output is correct |
26 |
Correct |
210 ms |
12112 KB |
Output is correct |
27 |
Correct |
262 ms |
13140 KB |
Output is correct |
28 |
Correct |
257 ms |
13664 KB |
Output is correct |
29 |
Correct |
253 ms |
13644 KB |
Output is correct |
30 |
Correct |
114 ms |
7384 KB |
Output is correct |
31 |
Correct |
124 ms |
12880 KB |
Output is correct |
32 |
Correct |
161 ms |
13600 KB |
Output is correct |
33 |
Correct |
89 ms |
13324 KB |
Output is correct |
34 |
Correct |
178 ms |
13648 KB |
Output is correct |
35 |
Correct |
154 ms |
13152 KB |
Output is correct |
36 |
Correct |
165 ms |
13276 KB |
Output is correct |
37 |
Correct |
147 ms |
12108 KB |
Output is correct |