Submission #1074672

# Submission time Handle Problem Language Result Execution time Memory
1074672 2024-08-25T12:07:51 Z anango Soccer Stadium (IOI23_soccer) C++17
52 / 100
634 ms 87052 KB
#include "soccer.h"
#include <bits/stdc++.h>
using namespace std;
#define int long long
int n;
vector<vector<int>> pref;
vector<vector<signed>> field;

int INF = 1LL<<30;

int query(int a, int b, int c, int d) {
    if (a>c) swap(a,c);
    if (b>d) swap(b,d);
    return pref[c+1][d+1]-pref[a][d+1]-pref[c+1][b]+pref[a][b];
}

int union_length(vector<int> i1, vector<int> i2) {
    return max(i2[1],i1[1])-min(i2[0],i1[0])+1;
}

int length(vector<int> interval) {
    return interval[1]-interval[0]+1;
}

bool check(vector<int> i1, vector<int> i2) {
    //check whether the length of the union of the intervals is equal to the maximum length of the 2 
    return max(length(i1),length(i2))==union_length(i1,i2);
}
void prv(vector<int> v) {
    for (auto i:v) {
        cout << i <<" ";
    }
    cout << endl;
}

signed biggest_stadium(signed N, vector<vector<signed>> F) {
    //the stadium is valid iff for every pair of cells (a,b) and (c,d), 
    //everything in the paths (a,b) to (a,d) to (c,d) is inside
    //or everything in the paths (a,b) to (a,c) to (c,d) is inside
    n=N;
    field=F;
    pref=vector<vector<int>>(n+1,vector<int>(n+1,0));
    for (int i=0; i<n; i++) {
        for (int j=0; j<n; j++) {
            pref[i+1][j+1] = pref[i+1][j]+pref[i][j+1]-pref[i][j]+F[i][j];
            
        }
    }
    for (int i=0; i<=n; i++) {
        for (int j=0; j<=n; j++) {
            //cout << pref[i][j] <<" ";
        }
        //cout << endl;
    }
    if (pref[n][n]<=1) {
        if (pref[n][n]==0) return n*n;
        //subtask 1
        for (int i=0; i<n; i++) {
            for (int j=0; j<n; j++) {
                if (F[i][j]==1) {
                    int mi = min({(i+1)*(j+1),(n-i)*(j+1),(i+1)*(n-j),(n-i)*(n-j)});
                    return n*n-mi;
                }
            }
        }
    }
    if (n>=10) {
        vector<vector<int>> rows(n,{INF,-INF});
        vector<vector<int>> cols(n,{INF,-INF});
        for (int i=0; i<n; i++) {
            for (int j=0; j<n; j++) {
                if (F[i][j]==0) {
                    rows[i][0] = min(rows[i][0],j);
                    rows[i][1] = max(rows[i][1],j);
                    cols[j][0] = min(cols[j][0],i);
                    cols[j][1] = max(cols[j][1],i);
                }
            }
        }
        for (int i=0; i<n; i++) {
            for (int j=0; j<n; j++) {
                if (F[i][j]==1) {
                    if (rows[i][0]<=j && j<=rows[i][1]) {
                        return 0;
                    }
                    if (cols[j][0]<=i && i<=cols[j][1]) {
                        return 0;
                    }
                }
            }
        }
        for (int i=0; i<n; i++) {
            for (int j=i+1; j<n; j++) {
                if (!check(rows[i],rows[j])) {
                    return 0;
                }
            }
        }
        for (int i=0; i<n; i++) {
            for (int j=i+1; j<n; j++) {
                if (!check(cols[i],cols[j])) {
                    return 0;
                }
            }
        }
        return n*n-pref[n][n];
    }
    //EM = current expansion mask
    int jambloat = -1;
    for (int EM=0; EM<1LL<<(n-1); EM++) {
        int l = 0;
        int r = n-1;
        vector<int> ep;
        for (int i=0; i<n-1; i++) {
            if (EM&(1LL<<i)) {
                ep.push_back(l);
                l++;
            }
            else {
                ep.push_back(r);
                r--;
            }
        }
        ep.push_back(l);
        reverse(ep.begin(), ep.end());
        //prv(ep);
        int dp[n+1][n+1][2]; //dp[i][j] = best given the row number and how much has already been expanded (or contracted)
        for (int i=0; i<=n; i++) {
            for (int j=0; j<=n; j++) {
                dp[i][j][0] = dp[i][j][1] = -INF;
            }
        }
        vector<pair<int,int>> bounds(n+1); //the left and right if we expand upto the ith expansion
        bounds[0] = {ep[0],ep[0]-1};
        int mi = INF;
        int ma = -1;
        for (int i=0; i<n; i++) {
            mi=min(mi,ep[i]);
            ma=max(ma,ep[i]);
            bounds[i+1] = {mi,ma};
        }
        //cout << query(3,0,3,2) << " " << pref[n][n] << " " << pref[3][5] << " " << pref[4][3]-pref[4][0]-pref[3][3]+pref[3][0] << endl;
        dp[0][0][0] = 0;
        for (int i=0; i<n; i++) {
            //previous row
            for (int expand=0; expand<2; expand++) { //0 is expanding, 1 is contracting
                for (int prevexp=0; prevexp<=n; prevexp++) {
                    //if (prevexp>0 && query(i,bounds[prevexp].first,i,bounds[prevexp].second)!=0) continue;
                    for (int newexp=0; newexp<=n; newexp++) {
                        if (newexp>prevexp && expand==1) continue;
                        if (newexp>0 && query(i,bounds[newexp].first,i,bounds[newexp].second)!=0) continue;
                        int delta = bounds[newexp].second-bounds[newexp].first+1;
                        int newexpand = 0;
                        if (expand==0) {
                            if (newexp<prevexp) {
                                newexpand=1;
                            }
                        }
                        else {
                            newexpand = 1;
                        }
                        //cout << "HERE" << " " << i <<" " << expand <<" " << prevexp <<" " << newexp <<" " << newexpand <<" " << delta << " " << bounds[newexp].first <<" " << bounds[newexp].second << " " << query(i,bounds[newexp].first,i,bounds[newexp].second) << endl;
                        dp[i+1][newexp][newexpand] = max(dp[i+1][newexp][newexpand],dp[i][prevexp][expand]+delta);
                    }
                }
            }
        }
        int ans = -1;
        for (int i=0; i<=n; i++) {
            for (int j=0; j<=n; j++) {
                for (int k=0; k<2; k++) {
                    //cout << "DOING " << i <<" " << j <<" " << k <<" " << dp[i][j][k] << endl;
                    ans=max(ans,dp[i][j][k]);
                }
            }
        }
        //prv(ep);
        jambloat=max(jambloat,ans);
        //cout << ma <<" " << ans << endl;
    }
    return jambloat;
    


}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB ok
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB ok
2 Correct 1 ms 348 KB ok
3 Correct 0 ms 348 KB ok
4 Correct 0 ms 348 KB ok
5 Correct 0 ms 348 KB ok
6 Correct 0 ms 348 KB ok
7 Correct 1 ms 604 KB ok
8 Correct 13 ms 5272 KB ok
9 Correct 207 ms 78928 KB ok
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB ok
2 Correct 1 ms 348 KB ok
3 Correct 0 ms 348 KB ok
4 Correct 0 ms 348 KB ok
5 Correct 0 ms 348 KB ok
6 Correct 0 ms 432 KB ok
7 Correct 0 ms 348 KB ok
8 Correct 0 ms 344 KB ok
9 Correct 0 ms 348 KB ok
10 Correct 0 ms 348 KB ok
11 Correct 0 ms 348 KB ok
12 Correct 0 ms 348 KB ok
13 Correct 0 ms 348 KB ok
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB ok
2 Correct 0 ms 348 KB ok
3 Correct 1 ms 348 KB ok
4 Correct 0 ms 348 KB ok
5 Correct 0 ms 348 KB ok
6 Correct 0 ms 348 KB ok
7 Correct 0 ms 432 KB ok
8 Correct 0 ms 348 KB ok
9 Correct 0 ms 344 KB ok
10 Correct 0 ms 348 KB ok
11 Correct 0 ms 348 KB ok
12 Correct 0 ms 348 KB ok
13 Correct 0 ms 348 KB ok
14 Correct 0 ms 348 KB ok
15 Correct 1 ms 344 KB ok
16 Correct 1 ms 348 KB ok
17 Correct 0 ms 348 KB ok
18 Correct 0 ms 348 KB ok
19 Correct 0 ms 348 KB ok
20 Correct 0 ms 348 KB ok
21 Correct 0 ms 348 KB ok
22 Correct 0 ms 348 KB ok
23 Correct 1 ms 348 KB ok
24 Correct 1 ms 344 KB ok
25 Correct 1 ms 348 KB ok
26 Correct 0 ms 436 KB ok
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB ok
2 Correct 0 ms 348 KB ok
3 Correct 1 ms 348 KB ok
4 Correct 0 ms 348 KB ok
5 Correct 0 ms 348 KB ok
6 Correct 0 ms 348 KB ok
7 Correct 0 ms 348 KB ok
8 Correct 0 ms 348 KB ok
9 Correct 0 ms 432 KB ok
10 Correct 0 ms 348 KB ok
11 Correct 0 ms 344 KB ok
12 Correct 0 ms 348 KB ok
13 Correct 0 ms 348 KB ok
14 Correct 0 ms 348 KB ok
15 Correct 0 ms 348 KB ok
16 Correct 0 ms 348 KB ok
17 Correct 1 ms 344 KB ok
18 Correct 1 ms 348 KB ok
19 Correct 0 ms 348 KB ok
20 Correct 0 ms 348 KB ok
21 Correct 0 ms 348 KB ok
22 Correct 0 ms 348 KB ok
23 Correct 0 ms 348 KB ok
24 Correct 0 ms 348 KB ok
25 Correct 1 ms 348 KB ok
26 Correct 1 ms 344 KB ok
27 Correct 1 ms 348 KB ok
28 Correct 0 ms 436 KB ok
29 Correct 1 ms 348 KB ok
30 Partially correct 0 ms 348 KB partial
31 Partially correct 0 ms 348 KB partial
32 Partially correct 1 ms 348 KB partial
33 Partially correct 0 ms 348 KB partial
34 Correct 1 ms 348 KB ok
35 Correct 0 ms 348 KB ok
36 Partially correct 0 ms 348 KB partial
37 Partially correct 1 ms 348 KB partial
38 Partially correct 0 ms 348 KB partial
39 Partially correct 0 ms 348 KB partial
40 Partially correct 0 ms 348 KB partial
41 Partially correct 0 ms 348 KB partial
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB ok
2 Correct 0 ms 348 KB ok
3 Correct 1 ms 348 KB ok
4 Correct 0 ms 348 KB ok
5 Correct 0 ms 348 KB ok
6 Correct 0 ms 348 KB ok
7 Correct 0 ms 348 KB ok
8 Correct 0 ms 348 KB ok
9 Correct 0 ms 432 KB ok
10 Correct 0 ms 348 KB ok
11 Correct 0 ms 344 KB ok
12 Correct 0 ms 348 KB ok
13 Correct 0 ms 348 KB ok
14 Correct 0 ms 348 KB ok
15 Correct 0 ms 348 KB ok
16 Correct 0 ms 348 KB ok
17 Correct 1 ms 344 KB ok
18 Correct 1 ms 348 KB ok
19 Correct 0 ms 348 KB ok
20 Correct 0 ms 348 KB ok
21 Correct 0 ms 348 KB ok
22 Correct 0 ms 348 KB ok
23 Correct 0 ms 348 KB ok
24 Correct 0 ms 348 KB ok
25 Correct 1 ms 348 KB ok
26 Correct 1 ms 344 KB ok
27 Correct 1 ms 348 KB ok
28 Correct 0 ms 436 KB ok
29 Correct 1 ms 348 KB ok
30 Partially correct 0 ms 348 KB partial
31 Partially correct 0 ms 348 KB partial
32 Partially correct 1 ms 348 KB partial
33 Partially correct 0 ms 348 KB partial
34 Correct 1 ms 348 KB ok
35 Correct 0 ms 348 KB ok
36 Partially correct 0 ms 348 KB partial
37 Partially correct 1 ms 348 KB partial
38 Partially correct 0 ms 348 KB partial
39 Partially correct 0 ms 348 KB partial
40 Partially correct 0 ms 348 KB partial
41 Partially correct 0 ms 348 KB partial
42 Partially correct 15 ms 5724 KB partial
43 Partially correct 15 ms 5724 KB partial
44 Partially correct 16 ms 5724 KB partial
45 Partially correct 17 ms 5724 KB partial
46 Partially correct 14 ms 5720 KB partial
47 Partially correct 16 ms 5816 KB partial
48 Correct 38 ms 5764 KB ok
49 Partially correct 14 ms 5724 KB partial
50 Partially correct 15 ms 5896 KB partial
51 Partially correct 16 ms 5724 KB partial
52 Partially correct 22 ms 5724 KB partial
53 Partially correct 25 ms 5724 KB partial
54 Partially correct 15 ms 5724 KB partial
55 Partially correct 14 ms 5720 KB partial
56 Partially correct 15 ms 5724 KB partial
57 Partially correct 18 ms 5724 KB partial
58 Partially correct 16 ms 5720 KB partial
59 Partially correct 15 ms 5724 KB partial
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB ok
2 Correct 0 ms 348 KB ok
3 Correct 1 ms 348 KB ok
4 Correct 0 ms 348 KB ok
5 Correct 0 ms 348 KB ok
6 Correct 0 ms 348 KB ok
7 Correct 0 ms 348 KB ok
8 Correct 1 ms 604 KB ok
9 Correct 13 ms 5272 KB ok
10 Correct 207 ms 78928 KB ok
11 Correct 0 ms 348 KB ok
12 Correct 0 ms 348 KB ok
13 Correct 0 ms 348 KB ok
14 Correct 0 ms 432 KB ok
15 Correct 0 ms 348 KB ok
16 Correct 0 ms 344 KB ok
17 Correct 0 ms 348 KB ok
18 Correct 0 ms 348 KB ok
19 Correct 0 ms 348 KB ok
20 Correct 0 ms 348 KB ok
21 Correct 0 ms 348 KB ok
22 Correct 1 ms 344 KB ok
23 Correct 1 ms 348 KB ok
24 Correct 0 ms 348 KB ok
25 Correct 0 ms 348 KB ok
26 Correct 0 ms 348 KB ok
27 Correct 0 ms 348 KB ok
28 Correct 0 ms 348 KB ok
29 Correct 0 ms 348 KB ok
30 Correct 1 ms 348 KB ok
31 Correct 1 ms 344 KB ok
32 Correct 1 ms 348 KB ok
33 Correct 0 ms 436 KB ok
34 Correct 1 ms 348 KB ok
35 Partially correct 0 ms 348 KB partial
36 Partially correct 0 ms 348 KB partial
37 Partially correct 1 ms 348 KB partial
38 Partially correct 0 ms 348 KB partial
39 Correct 1 ms 348 KB ok
40 Correct 0 ms 348 KB ok
41 Partially correct 0 ms 348 KB partial
42 Partially correct 1 ms 348 KB partial
43 Partially correct 0 ms 348 KB partial
44 Partially correct 0 ms 348 KB partial
45 Partially correct 0 ms 348 KB partial
46 Partially correct 0 ms 348 KB partial
47 Partially correct 15 ms 5724 KB partial
48 Partially correct 15 ms 5724 KB partial
49 Partially correct 16 ms 5724 KB partial
50 Partially correct 17 ms 5724 KB partial
51 Partially correct 14 ms 5720 KB partial
52 Partially correct 16 ms 5816 KB partial
53 Correct 38 ms 5764 KB ok
54 Partially correct 14 ms 5724 KB partial
55 Partially correct 15 ms 5896 KB partial
56 Partially correct 16 ms 5724 KB partial
57 Partially correct 22 ms 5724 KB partial
58 Partially correct 25 ms 5724 KB partial
59 Partially correct 15 ms 5724 KB partial
60 Partially correct 14 ms 5720 KB partial
61 Partially correct 15 ms 5724 KB partial
62 Partially correct 18 ms 5724 KB partial
63 Partially correct 16 ms 5720 KB partial
64 Partially correct 15 ms 5724 KB partial
65 Partially correct 235 ms 83252 KB partial
66 Partially correct 255 ms 87052 KB partial
67 Partially correct 234 ms 86868 KB partial
68 Partially correct 240 ms 84268 KB partial
69 Partially correct 235 ms 87048 KB partial
70 Partially correct 240 ms 86932 KB partial
71 Partially correct 245 ms 86796 KB partial
72 Partially correct 275 ms 86864 KB partial
73 Correct 634 ms 87040 KB ok
74 Correct 593 ms 86932 KB ok
75 Partially correct 222 ms 86800 KB partial
76 Partially correct 228 ms 86932 KB partial
77 Partially correct 231 ms 86692 KB partial
78 Partially correct 234 ms 86864 KB partial
79 Partially correct 239 ms 86920 KB partial
80 Partially correct 237 ms 86916 KB partial
81 Partially correct 236 ms 86920 KB partial
82 Partially correct 289 ms 86864 KB partial
83 Partially correct 234 ms 86792 KB partial
84 Partially correct 396 ms 86864 KB partial
85 Partially correct 398 ms 86868 KB partial
86 Partially correct 376 ms 86932 KB partial
87 Partially correct 225 ms 86940 KB partial
88 Partially correct 235 ms 86804 KB partial
89 Partially correct 218 ms 85908 KB partial
90 Partially correct 229 ms 86868 KB partial
91 Partially correct 226 ms 87044 KB partial
92 Partially correct 290 ms 86864 KB partial
93 Partially correct 229 ms 86852 KB partial
94 Partially correct 285 ms 86864 KB partial
95 Partially correct 250 ms 86884 KB partial
96 Partially correct 239 ms 86868 KB partial
97 Partially correct 231 ms 86920 KB partial
98 Partially correct 233 ms 86868 KB partial
99 Partially correct 232 ms 86932 KB partial
100 Partially correct 225 ms 86916 KB partial
101 Partially correct 219 ms 86868 KB partial
102 Partially correct 246 ms 86812 KB partial
103 Partially correct 235 ms 86920 KB partial
104 Partially correct 263 ms 86868 KB partial
105 Partially correct 222 ms 86864 KB partial
106 Partially correct 230 ms 86920 KB partial
107 Partially correct 231 ms 86804 KB partial
108 Partially correct 230 ms 87048 KB partial
109 Partially correct 230 ms 86792 KB partial