Submission #1074496

# Submission time Handle Problem Language Result Execution time Memory
1074496 2024-08-25T10:48:16 Z joelgun14 Growing Vegetables is Fun 5 (JOI24_vegetables5) C++17
41 / 100
3456 ms 37676 KB
// header file
#include <bits/stdc++.h>
// pragma
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#pragma GCC opitmize("Ofast")
#pragma GCC opitmize("unroll-loops")
// macros
#define endl "\n"
#define ll long long
#define mp make_pair
#define ins insert
#define lb lower_bound
#define pb push_back
#define ub upper_bound
#define lll __int128
#define fi first
#define se second
using namespace std;
const int lim = 6e5 + 5;
struct fenwick {
  int a[lim];
  fenwick() {
    memset(a, 0, sizeof(a));
  }
  void update(int idx, int val) {
    // cerr << idx << endl;
    while(idx < lim) {
      a[idx] += val;
      idx += idx&-idx;
    }
  }
  void update(int l, int r, int val) {
    if(l <=r) {
      update(l, val);
      update(r + 1, -val);
    }
  }
  int query(int idx) {
    int res = 0;
    while(idx) {
      res += a[idx];
      idx -= idx&-idx;
    }
    return res;
  }
} cur;
struct disjoint_setr {
  int h[lim];
  void reset() {
    memset(h, -1, sizeof(h));
  }
  disjoint_setr() {
    reset();
  }
  int nxt(int x) {
    return h[x] == -1 ? x : h[x] = nxt(h[x]);
  }
  void erase(int x) {
    merge(x, x + 1);
  }
  void merge(int x, int y) {
    x = nxt(x), y = nxt(y);
    if(x != y) {
      if(x < y)
        swap(x, y);
      h[y] = x;
    }
  }
} redr, bluer;
struct disjoint_setl {
  int h[lim];
  void reset() {
    memset(h, -1, sizeof(h));
  }
  disjoint_setl() {
    reset();
  }
  int prv(int x) {
    return h[x] == -1 ? x : h[x] = prv(h[x]);
  }
  void erase(int x) {
    merge(x - 1, x);
  }
  void merge(int x, int y) {
    x = prv(x), y = prv(y);
    if(x != y) {
      if(x > y)
        swap(x, y);
      h[y] = x;
    }
  }
} redl, bluel;
int main() {
  ios_base::sync_with_stdio(0); cin.tie(NULL);
  int n;
  cin >> n;
  int a[2 * n + 5];
  for(int i = 1; i <= 2 * n; ++i)
    cin >> a[i];
  int b[n + 5], c[n + 5];
  for(int i = 1; i <= n; ++i)
    cin >> b[i];
  for(int i = 1; i <= n; ++i)
    cin >> c[i];
  sort(b + 1, b + n + 1);
  sort(c + 1, c + n + 1);
  int l = 0, r = 1e9, res = -1;
  vector<pair<int, int>> v;
  for(int i = 1; i <= 2 * n; ++i)
    v.pb(mp(a[i], i));
  sort(v.begin(), v.end());
  pair<int, int> validb[2 * n + 5], validr[2 * n + 5];
  while(l <= r) {
    memset(cur.a, 0, sizeof(cur.a));
    redl.reset();
    redr.reset();
    bluel.reset();
    bluer.reset();
    int mid = (l + r) >> 1;
    // max diff -> mid
    // try each partition what is the max diff
    // nanti ada banyak validity test, tinggal cek validity testnya mana aja
    int b1 = 1, b2 = 1, r1 = 1, r2 = 1;
    for(auto p : v) {
      // cerr << p.fi << " " << mid << " " << b[b1] << endl;
      while(b1 <= n && p.fi - mid > b[b1])
        ++b1;
      while(b2 <= n && p.fi + mid >= b[b2])
        ++b2;
      --b2;
      while(r1 <= n && p.fi - mid > c[r1])
        ++r1;
      while(r2 <= n && p.fi + mid >= c[r2])
        ++r2;
      --r2;
      validb[p.se] = mp(b1, b2);
      validr[p.se] = mp(r1, r2);
      // cerr << b1 << " " << b2 << " " << r1 << " " << r2 << endl;
    }
    // for(int i = 1; i <= 2 * n; ++i) {
    //   // idx of element >= a[i] - mid
    //   validb[i].fi = lower_bound(b + 1, b + n + 1, a[i] - mid) - b;
    //   // idx of element <= a[i] + mid
    //   validb[i].se = upper_bound(b + 1, b + n + 1, a[i] + mid) - b - 1;
    //   // idx of element >= a[i] - mid
    //   validr[i].fi = lower_bound(c + 1, c + n + 1, a[i] - mid) - c;
    //   // idx of element <= a[i] + mid
    //   validr[i].se = upper_bound(c + 1, c + n + 1, a[i] + mid) - c - 1;
    //   // if(mid == 1) {
    //   //   cerr << a[i] + mid << " " << upper_bound(c + 1, c + n + 1, a[i] + mid) - c - 1 << " " << validr[i].se << endl;
    //   // }
    // }
    // cerr << "TEST" << endl;
    for(auto p : v) {
      // process
      // cerr << "UPDATE" << endl;
      cur.update(max(1, p.se - n + 1), p.se, 1);
      // observe that blue on left/right of that segment can be invalid
      int idx = p.se;
      // cerr << "TEST" << endl;
      int val;
      while((val = bluer.nxt(max(1, p.se - n + 1))) <= p.se && val > 0) {
        int tmp2 = cur.query(val);
        if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
          bluer.erase(val), bluel.erase(val);
        else
          break;
      }
      while((val = bluel.prv(p.se)) >= max(1, p.se - n + 1)) {
        int tmp2 = cur.query(val);
        if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
          bluer.erase(val), bluel.erase(val);
        else
          break;
      }
      // cerr << "DONE" << endl;
      if(p.se <= n) {
        cur.update(p.se + n + 1, 2 * n, 1);
        // observe that blue on left/right of that segment can be invalid
        while((val = bluer.nxt(p.se + n + 1)) <= 2 * n) {
          // cerr << val << endl;
          int tmp2 = cur.query(val);
          // cerr << "AFTER" << endl;
          if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se) {
            bluer.erase(val), bluel.erase(val);
            // cerr << "HERE" << endl;
          }
          else
            break;
        }
        // cerr << "CHECK" << endl;
        while((val = bluel.prv(2 * n)) >= p.se + n + 1) {
          // cerr << val << endl;
          int tmp2 = cur.query(val);
          if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
            bluer.erase(val), bluel.erase(val);
          else
            break;
        } 
      }
      // cerr << "TEST2" << endl;
      while((val = redr.nxt(max(1, p.se - n + 1))) <= p.se && val > 0) {
        // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].fi << endl; 
        int tmp2 = cur.query(val);
        if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
          redr.erase(val), redl.erase(val);
        else
          break;
      }
      while((val = redl.prv(p.se)) >= max(1, p.se - n + 1)) {
        // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].se << endl; 
        int tmp2 = cur.query(val);
        if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
          redr.erase(val), redl.erase(val);
        else
          break;
      }
      if(p.se <= n) {
        // observe that red on left/right of that segment can be invalid
        while((val = redr.nxt(p.se + n + 1)) <= 2 * n) {
          // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].fi << endl; 
          int tmp2 = cur.query(val);
          if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
            redr.erase(val), redl.erase(val);
          else
            break;
        }
        while((val = redl.prv(2 * n)) >= p.se + n + 1) {
          // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].se << endl; 
          int tmp2 = cur.query(val);
          if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
            redr.erase(val), redl.erase(val);
          else
            break;
        } 
      }
      // cerr << "FINISH" << endl;
    }
    // blue and red have to complement each other
    bool ans = 0;
    // cerr << "MID IS " << mid << endl;
    for(int i = 1; i + n <= 2 * n; ++i) {
      // cerr << i << " " << i + n << endl;
      // cerr << bluel.prv(i) << " " << bluel.prv(i + n) << endl;
      // cerr << redl.prv(i) << " " << redl.prv(i + n) << endl;
      if((bluel.prv(i) == i && redl.prv(i + n) == i + n) || (redl.prv(i) == i && bluel.prv(i + n) == i + n))
        ans = 1;
      // cerr << "DONE" << endl;
    }
    /*
    if(mid <= 20) {
      cerr << "DEBUG " << mid << endl;
      for(auto x : red) {
        cerr << x << " ";
      }
      cerr << endl;
      for(auto x : blue) {
        cerr << x << " ";
      }
      cerr << endl;
    }
    */
    if(ans) 
      r = mid - 1, res = mid;
    else
      l = mid + 1;
  }
  cout << res << endl;
  // choose a contiguous segment L to R such that we use one color
  // N^2 approach -> pair greedily (sorted)
  // int res = 1e9;
  // for(int i = 1; i + n <= 2 * n + 1; ++i) {
  //   vector<int> blue, red;
  //   for(int j = 1; j < i; ++j) {
  //     blue.pb(a[j]);
  //   }
  //   for(int j = i; j < i + n; ++j) {
  //     red.pb(a[j]);
  //   }
  //   for(int j = i + n; j <= 2 * n; ++j) {
  //     blue.pb(a[j]);
  //   }
  //   sort(blue.begin(), blue.end());
  //   sort(red.begin(), red.end());
  //   int mx = 0;
  //   for(int k = 1; k <= n; ++k) {
  //     mx = max({mx, abs(blue[k - 1] - b[k]), abs(red[k - 1] - c[k])});
  //   }
  //   res = min(res, mx);
  //   mx = 0;
  //   swap(red, blue);
  //   for(int k = 1; k <= n; ++k) {
  //     mx = max({mx, abs(blue[k - 1] - b[k]), abs(red[k - 1] - c[k])});
  //   }
  //   res = min(res, mx);
  // }
  // cout << res << endl;
  return 0;
}

Compilation message

Main.cpp:5: warning: ignoring '#pragma GCC opitmize' [-Wunknown-pragmas]
    5 | #pragma GCC opitmize("Ofast")
      | 
Main.cpp:6: warning: ignoring '#pragma GCC opitmize' [-Wunknown-pragmas]
    6 | #pragma GCC opitmize("unroll-loops")
      |
# Verdict Execution time Memory Grader output
1 Correct 10 ms 12124 KB Output is correct
2 Correct 11 ms 12124 KB Output is correct
3 Correct 11 ms 12120 KB Output is correct
4 Correct 9 ms 11996 KB Output is correct
5 Correct 10 ms 12124 KB Output is correct
6 Correct 10 ms 12124 KB Output is correct
7 Correct 10 ms 12124 KB Output is correct
8 Correct 9 ms 12124 KB Output is correct
9 Correct 9 ms 12196 KB Output is correct
10 Correct 9 ms 12124 KB Output is correct
11 Correct 8 ms 12200 KB Output is correct
12 Correct 10 ms 12200 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 10 ms 12124 KB Output is correct
2 Correct 11 ms 12124 KB Output is correct
3 Correct 11 ms 12120 KB Output is correct
4 Correct 9 ms 11996 KB Output is correct
5 Correct 10 ms 12124 KB Output is correct
6 Correct 10 ms 12124 KB Output is correct
7 Correct 10 ms 12124 KB Output is correct
8 Correct 9 ms 12124 KB Output is correct
9 Correct 9 ms 12196 KB Output is correct
10 Correct 9 ms 12124 KB Output is correct
11 Correct 8 ms 12200 KB Output is correct
12 Correct 10 ms 12200 KB Output is correct
13 Correct 10 ms 12124 KB Output is correct
14 Correct 10 ms 12124 KB Output is correct
15 Correct 8 ms 12124 KB Output is correct
16 Correct 9 ms 12120 KB Output is correct
17 Correct 11 ms 12124 KB Output is correct
18 Correct 10 ms 12124 KB Output is correct
19 Correct 9 ms 12200 KB Output is correct
20 Correct 9 ms 12124 KB Output is correct
21 Correct 10 ms 12124 KB Output is correct
22 Incorrect 10 ms 12196 KB Output isn't correct
23 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 10 ms 12124 KB Output is correct
2 Correct 11 ms 12124 KB Output is correct
3 Correct 11 ms 12120 KB Output is correct
4 Correct 9 ms 11996 KB Output is correct
5 Correct 10 ms 12124 KB Output is correct
6 Correct 10 ms 12124 KB Output is correct
7 Correct 10 ms 12124 KB Output is correct
8 Correct 9 ms 12124 KB Output is correct
9 Correct 9 ms 12196 KB Output is correct
10 Correct 9 ms 12124 KB Output is correct
11 Correct 8 ms 12200 KB Output is correct
12 Correct 10 ms 12200 KB Output is correct
13 Correct 10 ms 12124 KB Output is correct
14 Correct 10 ms 12124 KB Output is correct
15 Correct 8 ms 12124 KB Output is correct
16 Correct 9 ms 12120 KB Output is correct
17 Correct 11 ms 12124 KB Output is correct
18 Correct 10 ms 12124 KB Output is correct
19 Correct 9 ms 12200 KB Output is correct
20 Correct 9 ms 12124 KB Output is correct
21 Correct 10 ms 12124 KB Output is correct
22 Incorrect 10 ms 12196 KB Output isn't correct
23 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3456 ms 34816 KB Output is correct
2 Correct 3040 ms 35368 KB Output is correct
3 Correct 2807 ms 31064 KB Output is correct
4 Correct 2967 ms 37676 KB Output is correct
5 Correct 2814 ms 36028 KB Output is correct
6 Correct 117 ms 13016 KB Output is correct
7 Correct 2509 ms 36908 KB Output is correct
8 Correct 2892 ms 31156 KB Output is correct
9 Correct 2690 ms 36536 KB Output is correct
10 Correct 2750 ms 36140 KB Output is correct
11 Correct 2714 ms 37452 KB Output is correct
12 Correct 2691 ms 36936 KB Output is correct
13 Correct 2774 ms 35512 KB Output is correct
14 Correct 2945 ms 35512 KB Output is correct
15 Correct 2941 ms 33784 KB Output is correct
16 Correct 2732 ms 34632 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 10 ms 12124 KB Output is correct
2 Correct 11 ms 12124 KB Output is correct
3 Correct 11 ms 12120 KB Output is correct
4 Correct 9 ms 11996 KB Output is correct
5 Correct 10 ms 12124 KB Output is correct
6 Correct 10 ms 12124 KB Output is correct
7 Correct 10 ms 12124 KB Output is correct
8 Correct 9 ms 12124 KB Output is correct
9 Correct 9 ms 12196 KB Output is correct
10 Correct 9 ms 12124 KB Output is correct
11 Correct 8 ms 12200 KB Output is correct
12 Correct 10 ms 12200 KB Output is correct
13 Correct 10 ms 12124 KB Output is correct
14 Correct 10 ms 12124 KB Output is correct
15 Correct 8 ms 12124 KB Output is correct
16 Correct 9 ms 12120 KB Output is correct
17 Correct 11 ms 12124 KB Output is correct
18 Correct 10 ms 12124 KB Output is correct
19 Correct 9 ms 12200 KB Output is correct
20 Correct 9 ms 12124 KB Output is correct
21 Correct 10 ms 12124 KB Output is correct
22 Incorrect 10 ms 12196 KB Output isn't correct
23 Halted 0 ms 0 KB -