Submission #1074490

# Submission time Handle Problem Language Result Execution time Memory
1074490 2024-08-25T10:46:38 Z joelgun14 Growing Vegetables is Fun 5 (JOI24_vegetables5) C++17
41 / 100
3225 ms 37788 KB
// header file
#include <bits/stdc++.h>
// pragma
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#pragma GCC opitmize("Ofast")
#pragma GCC opitmize("unroll-loops")
// macros
#define endl "\n"
#define ll long long
#define mp make_pair
#define ins insert
#define lb lower_bound
#define pb push_back
#define ub upper_bound
#define lll __int128
#define fi first
#define se second
using namespace std;
const int lim = 6e5 + 5;
struct fenwick {
  int a[lim];
  fenwick() {
    memset(a, 0, sizeof(a));
  }
  void update(int idx, int val) {
    // cerr << idx << endl;
    while(idx < lim) {
      a[idx] += val;
      idx += idx&-idx;
    }
  }
  void update(int l, int r, int val) {
    if(l <=r) {
      update(l, val);
      update(r + 1, -val);
    }
  }
  int query(int idx) {
    int res = 0;
    while(idx) {
      res += a[idx];
      idx -= idx&-idx;
    }
    return res;
  }
} cur;
struct disjoint_setr {
  int h[lim];
  void reset() {
    memset(h, -1, sizeof(h));
  }
  disjoint_setr() {
    reset();
  }
  int nxt(int x) {
    return h[x] == -1 ? x : h[x] = nxt(h[x]);
  }
  void erase(int x) {
    merge(x, x + 1);
  }
  void merge(int x, int y) {
    x = nxt(x), y = nxt(y);
    if(x != y) {
      if(x < y)
        swap(x, y);
      h[y] = x;
    }
  }
} redr, bluer;
struct disjoint_setl {
  int h[lim];
  void reset() {
    memset(h, -1, sizeof(h));
  }
  disjoint_setl() {
    reset();
  }
  int prv(int x) {
    return h[x] == -1 ? x : h[x] = prv(h[x]);
  }
  void erase(int x) {
    merge(x - 1, x);
  }
  void merge(int x, int y) {
    x = prv(x), y = prv(y);
    if(x != y) {
      if(x > y)
        swap(x, y);
      h[y] = x;
    }
  }
} redl, bluel;
int main() {
  ios_base::sync_with_stdio(0); cin.tie(NULL);
  int n;
  cin >> n;
  int a[2 * n + 5];
  for(int i = 1; i <= 2 * n; ++i)
    cin >> a[i];
  int b[n + 5], c[n + 5];
  for(int i = 1; i <= n; ++i)
    cin >> b[i];
  for(int i = 1; i <= n; ++i)
    cin >> c[i];
  sort(b + 1, b + n + 1);
  sort(c + 1, c + n + 1);
  int l = 0, r = 1e9, res = -1;
  vector<pair<int, int>> v;
  for(int i = 1; i <= 2 * n; ++i)
    v.pb(mp(a[i], i));
  sort(v.begin(), v.end());
  pair<int, int> validb[2 * n + 5], validr[2 * n + 5];
  while(l <= r) {
    memset(cur.a, 0, sizeof(cur.a));
    redl.reset();
    redr.reset();
    bluel.reset();
    bluer.reset();
    int mid = (l + r) >> 1;
    // max diff -> mid
    // try each partition what is the max diff
    // nanti ada banyak validity test, tinggal cek validity testnya mana aja
    int b1 = 1, b2 = 1, r1 = 1, r2 = 1;
    for(auto p : v) {
      // cerr << p.fi << " " << mid << " " << b[b1] << endl;
      while(b1 <= 2 * n && p.fi - mid > b[b1])
        ++b1;
      while(b2 <= 2 * n && p.fi + mid >= b[b2])
        ++b2;
      --b2;
      while(r1 <= 2 * n && p.fi - mid > c[r1])
        ++r1;
      while(r2 <= 2 * n && p.fi + mid >= c[r2])
        ++r2;
      --r2;
      validb[p.se] = mp(b1, b2);
      validr[p.se] = mp(r1, r2);
      // cerr << b1 << " " << b2 << " " << r1 << " " << r2 << endl;
    }
    // for(int i = 1; i <= 2 * n; ++i) {
    //   // idx of element >= a[i] - mid
    //   validb[i].fi = lower_bound(b + 1, b + n + 1, a[i] - mid) - b;
    //   // idx of element <= a[i] + mid
    //   validb[i].se = upper_bound(b + 1, b + n + 1, a[i] + mid) - b - 1;
    //   // idx of element >= a[i] - mid
    //   validr[i].fi = lower_bound(c + 1, c + n + 1, a[i] - mid) - c;
    //   // idx of element <= a[i] + mid
    //   validr[i].se = upper_bound(c + 1, c + n + 1, a[i] + mid) - c - 1;
    //   // if(mid == 1) {
    //   //   cerr << a[i] + mid << " " << upper_bound(c + 1, c + n + 1, a[i] + mid) - c - 1 << " " << validr[i].se << endl;
    //   // }
    // }
    // cerr << "TEST" << endl;
    for(auto p : v) {
      // process
      // cerr << "UPDATE" << endl;
      cur.update(max(1, p.se - n + 1), p.se, 1);
      // observe that blue on left/right of that segment can be invalid
      int idx = p.se;
      // cerr << "TEST" << endl;
      int val;
      while((val = bluer.nxt(max(1, p.se - n + 1))) <= p.se && val > 0) {
        int tmp2 = cur.query(val);
        if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
          bluer.erase(val), bluel.erase(val);
        else
          break;
      }
      while((val = bluel.prv(p.se)) >= max(1, p.se - n + 1)) {
        int tmp2 = cur.query(val);
        if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
          bluer.erase(val), bluel.erase(val);
        else
          break;
      }
      // cerr << "DONE" << endl;
      if(p.se <= n) {
        cur.update(p.se + n + 1, 2 * n, 1);
        // observe that blue on left/right of that segment can be invalid
        while((val = bluer.nxt(p.se + n + 1)) <= 2 * n) {
          // cerr << val << endl;
          int tmp2 = cur.query(val);
          // cerr << "AFTER" << endl;
          if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se) {
            bluer.erase(val), bluel.erase(val);
            // cerr << "HERE" << endl;
          }
          else
            break;
        }
        // cerr << "CHECK" << endl;
        while((val = bluel.prv(2 * n)) >= p.se + n + 1) {
          // cerr << val << endl;
          int tmp2 = cur.query(val);
          if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
            bluer.erase(val), bluel.erase(val);
          else
            break;
        } 
      }
      // cerr << "TEST2" << endl;
      while((val = redr.nxt(max(1, p.se - n + 1))) <= p.se && val > 0) {
        // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].fi << endl; 
        int tmp2 = cur.query(val);
        if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
          redr.erase(val), redl.erase(val);
        else
          break;
      }
      while((val = redl.prv(p.se)) >= max(1, p.se - n + 1)) {
        // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].se << endl; 
        int tmp2 = cur.query(val);
        if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
          redr.erase(val), redl.erase(val);
        else
          break;
      }
      if(p.se <= n) {
        // observe that red on left/right of that segment can be invalid
        while((val = redr.nxt(p.se + n + 1)) <= 2 * n) {
          // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].fi << endl; 
          int tmp2 = cur.query(val);
          if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
            redr.erase(val), redl.erase(val);
          else
            break;
        }
        while((val = redl.prv(2 * n)) >= p.se + n + 1) {
          // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].se << endl; 
          int tmp2 = cur.query(val);
          if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
            redr.erase(val), redl.erase(val);
          else
            break;
        } 
      }
      // cerr << "FINISH" << endl;
    }
    // blue and red have to complement each other
    bool ans = 0;
    // cerr << "MID IS " << mid << endl;
    for(int i = 1; i + n <= 2 * n; ++i) {
      // cerr << i << " " << i + n << endl;
      // cerr << bluel.prv(i) << " " << bluel.prv(i + n) << endl;
      // cerr << redl.prv(i) << " " << redl.prv(i + n) << endl;
      if((bluel.prv(i) == i && redl.prv(i + n) == i + n) || (redl.prv(i) == i && bluel.prv(i + n) == i + n))
        ans = 1;
      // cerr << "DONE" << endl;
    }
    /*
    if(mid <= 20) {
      cerr << "DEBUG " << mid << endl;
      for(auto x : red) {
        cerr << x << " ";
      }
      cerr << endl;
      for(auto x : blue) {
        cerr << x << " ";
      }
      cerr << endl;
    }
    */
    if(ans) 
      r = mid - 1, res = mid;
    else
      l = mid + 1;
  }
  cout << res << endl;
  // choose a contiguous segment L to R such that we use one color
  // N^2 approach -> pair greedily (sorted)
  // int res = 1e9;
  // for(int i = 1; i + n <= 2 * n + 1; ++i) {
  //   vector<int> blue, red;
  //   for(int j = 1; j < i; ++j) {
  //     blue.pb(a[j]);
  //   }
  //   for(int j = i; j < i + n; ++j) {
  //     red.pb(a[j]);
  //   }
  //   for(int j = i + n; j <= 2 * n; ++j) {
  //     blue.pb(a[j]);
  //   }
  //   sort(blue.begin(), blue.end());
  //   sort(red.begin(), red.end());
  //   int mx = 0;
  //   for(int k = 1; k <= n; ++k) {
  //     mx = max({mx, abs(blue[k - 1] - b[k]), abs(red[k - 1] - c[k])});
  //   }
  //   res = min(res, mx);
  //   mx = 0;
  //   swap(red, blue);
  //   for(int k = 1; k <= n; ++k) {
  //     mx = max({mx, abs(blue[k - 1] - b[k]), abs(red[k - 1] - c[k])});
  //   }
  //   res = min(res, mx);
  // }
  // cout << res << endl;
  return 0;
}

Compilation message

Main.cpp:5: warning: ignoring '#pragma GCC opitmize' [-Wunknown-pragmas]
    5 | #pragma GCC opitmize("Ofast")
      | 
Main.cpp:6: warning: ignoring '#pragma GCC opitmize' [-Wunknown-pragmas]
    6 | #pragma GCC opitmize("unroll-loops")
      |
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12120 KB Output is correct
2 Correct 9 ms 12124 KB Output is correct
3 Correct 12 ms 12124 KB Output is correct
4 Correct 10 ms 12124 KB Output is correct
5 Correct 8 ms 12124 KB Output is correct
6 Correct 9 ms 12124 KB Output is correct
7 Correct 9 ms 12120 KB Output is correct
8 Correct 10 ms 12192 KB Output is correct
9 Correct 9 ms 12124 KB Output is correct
10 Correct 8 ms 12192 KB Output is correct
11 Correct 8 ms 12124 KB Output is correct
12 Correct 9 ms 12196 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12120 KB Output is correct
2 Correct 9 ms 12124 KB Output is correct
3 Correct 12 ms 12124 KB Output is correct
4 Correct 10 ms 12124 KB Output is correct
5 Correct 8 ms 12124 KB Output is correct
6 Correct 9 ms 12124 KB Output is correct
7 Correct 9 ms 12120 KB Output is correct
8 Correct 10 ms 12192 KB Output is correct
9 Correct 9 ms 12124 KB Output is correct
10 Correct 8 ms 12192 KB Output is correct
11 Correct 8 ms 12124 KB Output is correct
12 Correct 9 ms 12196 KB Output is correct
13 Correct 10 ms 12192 KB Output is correct
14 Correct 10 ms 12124 KB Output is correct
15 Correct 9 ms 12124 KB Output is correct
16 Correct 11 ms 12124 KB Output is correct
17 Correct 9 ms 12200 KB Output is correct
18 Correct 8 ms 12124 KB Output is correct
19 Correct 11 ms 12124 KB Output is correct
20 Correct 9 ms 12124 KB Output is correct
21 Correct 10 ms 12120 KB Output is correct
22 Incorrect 9 ms 12196 KB Output isn't correct
23 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12120 KB Output is correct
2 Correct 9 ms 12124 KB Output is correct
3 Correct 12 ms 12124 KB Output is correct
4 Correct 10 ms 12124 KB Output is correct
5 Correct 8 ms 12124 KB Output is correct
6 Correct 9 ms 12124 KB Output is correct
7 Correct 9 ms 12120 KB Output is correct
8 Correct 10 ms 12192 KB Output is correct
9 Correct 9 ms 12124 KB Output is correct
10 Correct 8 ms 12192 KB Output is correct
11 Correct 8 ms 12124 KB Output is correct
12 Correct 9 ms 12196 KB Output is correct
13 Correct 10 ms 12192 KB Output is correct
14 Correct 10 ms 12124 KB Output is correct
15 Correct 9 ms 12124 KB Output is correct
16 Correct 11 ms 12124 KB Output is correct
17 Correct 9 ms 12200 KB Output is correct
18 Correct 8 ms 12124 KB Output is correct
19 Correct 11 ms 12124 KB Output is correct
20 Correct 9 ms 12124 KB Output is correct
21 Correct 10 ms 12120 KB Output is correct
22 Incorrect 9 ms 12196 KB Output isn't correct
23 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3225 ms 35656 KB Output is correct
2 Correct 3052 ms 35700 KB Output is correct
3 Correct 2770 ms 30912 KB Output is correct
4 Correct 2848 ms 36912 KB Output is correct
5 Correct 2798 ms 36532 KB Output is correct
6 Correct 119 ms 12964 KB Output is correct
7 Correct 2568 ms 37788 KB Output is correct
8 Correct 3007 ms 31020 KB Output is correct
9 Correct 2788 ms 36280 KB Output is correct
10 Correct 2854 ms 36792 KB Output is correct
11 Correct 2830 ms 36664 KB Output is correct
12 Correct 2916 ms 35608 KB Output is correct
13 Correct 2949 ms 36020 KB Output is correct
14 Correct 3170 ms 35768 KB Output is correct
15 Correct 3046 ms 33812 KB Output is correct
16 Correct 2978 ms 35596 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 12120 KB Output is correct
2 Correct 9 ms 12124 KB Output is correct
3 Correct 12 ms 12124 KB Output is correct
4 Correct 10 ms 12124 KB Output is correct
5 Correct 8 ms 12124 KB Output is correct
6 Correct 9 ms 12124 KB Output is correct
7 Correct 9 ms 12120 KB Output is correct
8 Correct 10 ms 12192 KB Output is correct
9 Correct 9 ms 12124 KB Output is correct
10 Correct 8 ms 12192 KB Output is correct
11 Correct 8 ms 12124 KB Output is correct
12 Correct 9 ms 12196 KB Output is correct
13 Correct 10 ms 12192 KB Output is correct
14 Correct 10 ms 12124 KB Output is correct
15 Correct 9 ms 12124 KB Output is correct
16 Correct 11 ms 12124 KB Output is correct
17 Correct 9 ms 12200 KB Output is correct
18 Correct 8 ms 12124 KB Output is correct
19 Correct 11 ms 12124 KB Output is correct
20 Correct 9 ms 12124 KB Output is correct
21 Correct 10 ms 12120 KB Output is correct
22 Incorrect 9 ms 12196 KB Output isn't correct
23 Halted 0 ms 0 KB -