Submission #1074482

# Submission time Handle Problem Language Result Execution time Memory
1074482 2024-08-25T10:45:16 Z Zanite Growing Vegetables is Fun 5 (JOI24_vegetables5) C++17
67 / 100
5000 ms 49876 KB
// header file
#include <bits/stdc++.h>
// pragma
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// macros
#define endl "\n"
#define ll long long
#define mp make_pair
#define ins insert
#define lb lower_bound
#define pb push_back
#define ub upper_bound
#define lll __int128
#define fi first
#define se second
using namespace std;
const int lim = 6e5 + 5;
namespace fenwick {
  int a[lim];
  void update(int idx, int val) {
    // cerr << idx << endl;
    while(idx < lim) {
      a[idx] += val;
      idx += idx&-idx;
    }
  }
  void update(int l, int r, int val) {
    if(l > r) return;
    for (; l < lim; l += (l & -l)) a[l] += val;
    r++;
    for (; r < lim; r += (r & -r)) a[r] -= val;
  }
  int query(int idx) {
    if(idx >= lim)
      idx = lim - 1;
    int res = 0;
    for (; idx > 0; idx -= (idx & -idx)) res += a[idx];
    return res;
  }
};
struct disjoint_setr {
  int par[lim], sz[lim], h[lim];
  void reset() {
    for (int i = 0; i < lim; i++) {
      par[i] = h[i] = i;
      sz[i] = 1;
    }
  }
  disjoint_setr() {
    reset();
  }
  int rep(int x) {
    return par[x] == x ? x : par[x] = rep(par[x]);
  }
  int nxt(int x) { return h[rep(x)]; }
  void erase(int x) { merge(x, x + 1); }
  void merge(int x, int y) {
    x = rep(x), y = rep(y);
    if(x != y) {
      if (sz[x] < sz[y]) swap(x, y);
      par[y] = x;
      h[x] = max(h[x], h[y]);
      sz[x] += sz[y];
    }
  }
} redr, bluer;
struct disjoint_setl {
  int par[lim], sz[lim], h[lim];
  void reset() {
    for (int i = 0; i < lim; i++) {
      par[i] = h[i] = i;
      sz[i] = 1;
    }
  }
  disjoint_setl() {
    reset();
  }
  int rep(int x) {
    return par[x] == x ? x : par[x] = rep(par[x]);
  }
  int prv(int x) { return h[rep(x)]; }
  void erase(int x) { merge(x - 1, x); }
  void merge(int x, int y) {
    x = rep(x), y = rep(y);
    if(x != y) {
      if (sz[x] < sz[y]) swap(x, y);
      par[y] = x;
      h[x] = min(h[x], h[y]);
      sz[x] += sz[y];
    }
  }
} redl, bluel;
int main() {
  ios_base::sync_with_stdio(0); cin.tie(NULL);
  int n;
  cin >> n;
  int a[2 * n + 5];
  for(int i = 1; i <= 2 * n; ++i)
    cin >> a[i];
  int b[n + 5], c[n + 5];
  for(int i = 1; i <= n; ++i)
    cin >> b[i];
  for(int i = 1; i <= n; ++i)
    cin >> c[i];
  sort(b + 1, b + n + 1);
  sort(c + 1, c + n + 1);
  int l = 0, r = 1e9, res = -1;
  vector<pair<int, int>> v;
  for(int i = 1; i <= 2 * n; ++i)
    v.pb(mp(a[i], i));
  sort(v.begin(), v.end());
  pair<int, int> validb[2 * n + 5], validr[2 * n + 5];
  while(l <= r) {
    memset(fenwick::a, 0, sizeof(fenwick::a));
    redl.reset();
    redr.reset();
    bluel.reset();
    bluer.reset();
    int mid = (l + r) >> 1;
    // max diff -> mid
    // try each partition what is the max diff
    // nanti ada banyak validity test, tinggal cek validity testnya mana aja
    for(int i = 1; i <= 2 * n; ++i) {
      // idx of element >= a[i] - mid
      validb[i].fi = lower_bound(b + 1, b + n + 1, a[i] - mid) - b;
      // idx of element <= a[i] + mid
      validb[i].se = upper_bound(b + 1, b + n + 1, a[i] + mid) - b - 1;
      // idx of element >= a[i] - mid
      validr[i].fi = lower_bound(c + 1, c + n + 1, a[i] - mid) - c;
      // idx of element <= a[i] + mid
      validr[i].se = upper_bound(c + 1, c + n + 1, a[i] + mid) - c - 1;
      // if(mid == 1) {
      //   cerr << a[i] + mid << " " << upper_bound(c + 1, c + n + 1, a[i] + mid) - c - 1 << " " << validr[i].se << endl;
      // }
    }
    // cerr << "TEST" << endl;
    for(auto p : v) {
      // process
      // cerr << "UPDATE" << endl;
      fenwick::update(max(1, p.se - n + 1), p.se, 1);
      // observe that blue on left/right of that segment can be invalid
      int idx = p.se;
      // cerr << "TEST" << endl;
      int val;
      while((val = bluer.nxt(max(1, p.se - n + 1))) <= p.se && val > 0) {
        int tmp2 = fenwick::query(val);
        if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
          bluer.erase(val), bluel.erase(val);
        else
          break;
      }
      while((val = bluel.prv(p.se)) >= max(1, p.se - n + 1)) {
        int tmp2 = fenwick::query(val);
        if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
          bluer.erase(val), bluel.erase(val);
        else
          break;
      }
      // cerr << "DONE" << endl;
      if(p.se <= n) {
        fenwick::update(p.se + n + 1, 2 * n, 1);
        // observe that blue on left/right of that segment can be invalid
        while((val = bluer.nxt(p.se + n + 1)) <= 2 * n) {
          // cerr << val << endl;
          int tmp2 = fenwick::query(val);
          // cerr << "AFTER" << endl;
          if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se) {
            bluer.erase(val), bluel.erase(val);
            // cerr << "HERE" << endl;
          }
          else
            break;
        }
        // cerr << "CHECK" << endl;
        while((val = bluel.prv(2 * n)) >= p.se + n + 1) {
          // cerr << val << endl;
          int tmp2 = fenwick::query(val);
          if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
            bluer.erase(val), bluel.erase(val);
          else
            break;
        } 
      }
      // cerr << "TEST2" << endl;
      while((val = redr.nxt(max(1, p.se - n + 1))) <= p.se && val > 0) {
        // cerr << "check " << *it << " due to " << p.se << " " << fenwick::query(*it) << " " << validr[idx].fi << endl; 
        int tmp2 = fenwick::query(val);
        if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
          redr.erase(val), redl.erase(val);
        else
          break;
      }
      while((val = redl.prv(p.se)) >= max(1, p.se - n + 1)) {
        // cerr << "check " << *it << " due to " << p.se << " " << fenwick::query(*it) << " " << validr[idx].se << endl; 
        int tmp2 = fenwick::query(val);
        if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
          redr.erase(val), redl.erase(val);
        else
          break;
      }
      if(p.se <= n) {
        // observe that red on left/right of that segment can be invalid
        while((val = redr.nxt(p.se + n + 1)) <= 2 * n) {
          // cerr << "check " << *it << " due to " << p.se << " " << fenwick::query(*it) << " " << validr[idx].fi << endl; 
          int tmp2 = fenwick::query(val);
          if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
            redr.erase(val), redl.erase(val);
          else
            break;
        }
        while((val = redl.prv(2 * n)) >= p.se + n + 1) {
          // cerr << "check " << *it << " due to " << p.se << " " << fenwick::query(*it) << " " << validr[idx].se << endl; 
          int tmp2 = fenwick::query(val);
          if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
            redr.erase(val), redl.erase(val);
          else
            break;
        } 
      }
      // cerr << "FINISH" << endl;
    }
    // blue and red have to complement each other
    bool ans = 0;
    // cerr << "MID IS " << mid << endl;
    for(int i = 1; i + n <= 2 * n; ++i) {
      // cerr << i << " " << i + n << endl;
      // cerr << bluel.prv(i) << " " << bluel.prv(i + n) << endl;
      // cerr << redl.prv(i) << " " << redl.prv(i + n) << endl;
      if((bluel.prv(i) == i && redl.prv(i + n) == i + n) || (redl.prv(i) == i && bluel.prv(i + n) == i + n))
        ans = 1;
      // cerr << "DONE" << endl;
    }
    /*
    if(mid <= 20) {
      cerr << "DEBUG " << mid << endl;
      for(auto x : red) {
        cerr << x << " ";
      }
      cerr << endl;
      for(auto x : blue) {
        cerr << x << " ";
      }
      cerr << endl;
    }
    */
    if(ans) 
      r = mid - 1, res = mid;
    else
      l = mid + 1;
  }
  cout << res << endl;
  // choose a contiguous segment L to R such that we use one color
  // N^2 approach -> pair greedily (sorted)
  // int res = 1e9;
  // for(int i = 1; i + n <= 2 * n + 1; ++i) {
  //   vector<int> blue, red;
  //   for(int j = 1; j < i; ++j) {
  //     blue.pb(a[j]);
  //   }
  //   for(int j = i; j < i + n; ++j) {
  //     red.pb(a[j]);
  //   }
  //   for(int j = i + n; j <= 2 * n; ++j) {
  //     blue.pb(a[j]);
  //   }
  //   sort(blue.begin(), blue.end());
  //   sort(red.begin(), red.end());
  //   int mx = 0;
  //   for(int k = 1; k <= n; ++k) {
  //     mx = max({mx, abs(blue[k - 1] - b[k]), abs(red[k - 1] - c[k])});
  //   }
  //   res = min(res, mx);
  //   mx = 0;
  //   swap(red, blue);
  //   for(int k = 1; k <= n; ++k) {
  //     mx = max({mx, abs(blue[k - 1] - b[k]), abs(red[k - 1] - c[k])});
  //   }
  //   res = min(res, mx);
  // }
  // cout << res << endl;
  return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 36 ms 30812 KB Output is correct
2 Correct 35 ms 30808 KB Output is correct
3 Correct 37 ms 30812 KB Output is correct
4 Correct 34 ms 30812 KB Output is correct
5 Correct 33 ms 30808 KB Output is correct
6 Correct 38 ms 30812 KB Output is correct
7 Correct 34 ms 30808 KB Output is correct
8 Correct 38 ms 30808 KB Output is correct
9 Correct 38 ms 30812 KB Output is correct
10 Correct 36 ms 30808 KB Output is correct
11 Correct 38 ms 30808 KB Output is correct
12 Correct 38 ms 30808 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 36 ms 30812 KB Output is correct
2 Correct 35 ms 30808 KB Output is correct
3 Correct 37 ms 30812 KB Output is correct
4 Correct 34 ms 30812 KB Output is correct
5 Correct 33 ms 30808 KB Output is correct
6 Correct 38 ms 30812 KB Output is correct
7 Correct 34 ms 30808 KB Output is correct
8 Correct 38 ms 30808 KB Output is correct
9 Correct 38 ms 30812 KB Output is correct
10 Correct 36 ms 30808 KB Output is correct
11 Correct 38 ms 30808 KB Output is correct
12 Correct 38 ms 30808 KB Output is correct
13 Correct 38 ms 30812 KB Output is correct
14 Correct 34 ms 30812 KB Output is correct
15 Correct 37 ms 30808 KB Output is correct
16 Correct 35 ms 30812 KB Output is correct
17 Correct 35 ms 30812 KB Output is correct
18 Correct 37 ms 30812 KB Output is correct
19 Correct 35 ms 30808 KB Output is correct
20 Correct 33 ms 30812 KB Output is correct
21 Correct 33 ms 30812 KB Output is correct
22 Correct 33 ms 30812 KB Output is correct
23 Correct 38 ms 30812 KB Output is correct
24 Correct 35 ms 30976 KB Output is correct
25 Correct 35 ms 30952 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 36 ms 30812 KB Output is correct
2 Correct 35 ms 30808 KB Output is correct
3 Correct 37 ms 30812 KB Output is correct
4 Correct 34 ms 30812 KB Output is correct
5 Correct 33 ms 30808 KB Output is correct
6 Correct 38 ms 30812 KB Output is correct
7 Correct 34 ms 30808 KB Output is correct
8 Correct 38 ms 30808 KB Output is correct
9 Correct 38 ms 30812 KB Output is correct
10 Correct 36 ms 30808 KB Output is correct
11 Correct 38 ms 30808 KB Output is correct
12 Correct 38 ms 30808 KB Output is correct
13 Correct 38 ms 30812 KB Output is correct
14 Correct 34 ms 30812 KB Output is correct
15 Correct 37 ms 30808 KB Output is correct
16 Correct 35 ms 30812 KB Output is correct
17 Correct 35 ms 30812 KB Output is correct
18 Correct 37 ms 30812 KB Output is correct
19 Correct 35 ms 30808 KB Output is correct
20 Correct 33 ms 30812 KB Output is correct
21 Correct 33 ms 30812 KB Output is correct
22 Correct 33 ms 30812 KB Output is correct
23 Correct 38 ms 30812 KB Output is correct
24 Correct 35 ms 30976 KB Output is correct
25 Correct 35 ms 30952 KB Output is correct
26 Correct 57 ms 31068 KB Output is correct
27 Correct 65 ms 31068 KB Output is correct
28 Correct 63 ms 31108 KB Output is correct
29 Correct 40 ms 30812 KB Output is correct
30 Correct 68 ms 31064 KB Output is correct
31 Correct 61 ms 31064 KB Output is correct
32 Correct 44 ms 30812 KB Output is correct
33 Correct 43 ms 30808 KB Output is correct
34 Correct 60 ms 31064 KB Output is correct
35 Correct 60 ms 31112 KB Output is correct
36 Correct 70 ms 31064 KB Output is correct
37 Correct 57 ms 31108 KB Output is correct
38 Correct 62 ms 31064 KB Output is correct
39 Correct 68 ms 31116 KB Output is correct
40 Correct 60 ms 31064 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4533 ms 49840 KB Output is correct
2 Correct 4412 ms 49700 KB Output is correct
3 Correct 3871 ms 46536 KB Output is correct
4 Correct 4173 ms 49844 KB Output is correct
5 Correct 3876 ms 49876 KB Output is correct
6 Correct 188 ms 31712 KB Output is correct
7 Correct 3620 ms 49844 KB Output is correct
8 Correct 4000 ms 49840 KB Output is correct
9 Correct 4318 ms 49840 KB Output is correct
10 Correct 4152 ms 49696 KB Output is correct
11 Correct 4181 ms 49724 KB Output is correct
12 Correct 4223 ms 49840 KB Output is correct
13 Correct 4270 ms 49704 KB Output is correct
14 Correct 4157 ms 49840 KB Output is correct
15 Correct 4078 ms 49844 KB Output is correct
16 Correct 3734 ms 49844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 36 ms 30812 KB Output is correct
2 Correct 35 ms 30808 KB Output is correct
3 Correct 37 ms 30812 KB Output is correct
4 Correct 34 ms 30812 KB Output is correct
5 Correct 33 ms 30808 KB Output is correct
6 Correct 38 ms 30812 KB Output is correct
7 Correct 34 ms 30808 KB Output is correct
8 Correct 38 ms 30808 KB Output is correct
9 Correct 38 ms 30812 KB Output is correct
10 Correct 36 ms 30808 KB Output is correct
11 Correct 38 ms 30808 KB Output is correct
12 Correct 38 ms 30808 KB Output is correct
13 Correct 38 ms 30812 KB Output is correct
14 Correct 34 ms 30812 KB Output is correct
15 Correct 37 ms 30808 KB Output is correct
16 Correct 35 ms 30812 KB Output is correct
17 Correct 35 ms 30812 KB Output is correct
18 Correct 37 ms 30812 KB Output is correct
19 Correct 35 ms 30808 KB Output is correct
20 Correct 33 ms 30812 KB Output is correct
21 Correct 33 ms 30812 KB Output is correct
22 Correct 33 ms 30812 KB Output is correct
23 Correct 38 ms 30812 KB Output is correct
24 Correct 35 ms 30976 KB Output is correct
25 Correct 35 ms 30952 KB Output is correct
26 Correct 57 ms 31068 KB Output is correct
27 Correct 65 ms 31068 KB Output is correct
28 Correct 63 ms 31108 KB Output is correct
29 Correct 40 ms 30812 KB Output is correct
30 Correct 68 ms 31064 KB Output is correct
31 Correct 61 ms 31064 KB Output is correct
32 Correct 44 ms 30812 KB Output is correct
33 Correct 43 ms 30808 KB Output is correct
34 Correct 60 ms 31064 KB Output is correct
35 Correct 60 ms 31112 KB Output is correct
36 Correct 70 ms 31064 KB Output is correct
37 Correct 57 ms 31108 KB Output is correct
38 Correct 62 ms 31064 KB Output is correct
39 Correct 68 ms 31116 KB Output is correct
40 Correct 60 ms 31064 KB Output is correct
41 Correct 4533 ms 49840 KB Output is correct
42 Correct 4412 ms 49700 KB Output is correct
43 Correct 3871 ms 46536 KB Output is correct
44 Correct 4173 ms 49844 KB Output is correct
45 Correct 3876 ms 49876 KB Output is correct
46 Correct 188 ms 31712 KB Output is correct
47 Correct 3620 ms 49844 KB Output is correct
48 Correct 4000 ms 49840 KB Output is correct
49 Correct 4318 ms 49840 KB Output is correct
50 Correct 4152 ms 49696 KB Output is correct
51 Correct 4181 ms 49724 KB Output is correct
52 Correct 4223 ms 49840 KB Output is correct
53 Correct 4270 ms 49704 KB Output is correct
54 Correct 4157 ms 49840 KB Output is correct
55 Correct 4078 ms 49844 KB Output is correct
56 Correct 3734 ms 49844 KB Output is correct
57 Correct 4759 ms 49840 KB Output is correct
58 Execution timed out 5069 ms 49700 KB Time limit exceeded
59 Halted 0 ms 0 KB -