Submission #1074469

# Submission time Handle Problem Language Result Execution time Memory
1074469 2024-08-25T10:40:38 Z Zanite Growing Vegetables is Fun 5 (JOI24_vegetables5) C++17
67 / 100
5000 ms 51644 KB
// header file
#include <bits/stdc++.h>
// pragma
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// macros
#define endl "\n"
#define ll long long
#define mp make_pair
#define ins insert
#define lb lower_bound
#define pb push_back
#define ub upper_bound
#define lll __int128
#define fi first
#define se second
using namespace std;
const int lim = 6e5 + 5;
struct fenwick {
  int a[lim];
  fenwick() {
    memset(a, 0, sizeof(a));
  }
  void update(int idx, int val) {
    // cerr << idx << endl;
    assert(idx > 0);
    while(idx < lim) {
      a[idx] += val;
      idx += idx&-idx;
    }
  }
  void update(int l, int r, int val) {
    if(l > r)
      return;
    update(l, val);
    update(r + 1, -val);
  }
  int query(int idx) {
    if(idx >= lim)
      idx = lim - 1;
    int res = 0;
    while(idx) {
      res += a[idx];
      idx -= idx&-idx;
    }
    return res;
  }
} cur;
struct disjoint_setr {
  int par[lim], sz[lim], h[lim];
  void reset() {
    for (int i = 0; i < lim; i++) {
      par[i] = h[i] = i;
      sz[i] = 1;
    }
  }
  disjoint_setr() {
    reset();
  }
  int rep(int x) {
    return par[x] == x ? x : par[x] = rep(par[x]);
  }
  int nxt(int x) { return h[rep(x)]; }
  void erase(int x) { merge(x, x + 1); }
  void merge(int x, int y) {
    x = rep(x), y = rep(y);
    if(x != y) {
      if (sz[x] < sz[y]) swap(x, y);
      par[y] = x;
      h[x] = max(h[x], h[y]);
      sz[x] += sz[y];
    }
  }
} redr, bluer;
struct disjoint_setl {
  int par[lim], sz[lim], h[lim];
  void reset() {
    for (int i = 0; i < lim; i++) {
      par[i] = h[i] = i;
      sz[i] = 1;
    }
  }
  disjoint_setl() {
    reset();
  }
  int rep(int x) {
    return par[x] == x ? x : par[x] = rep(par[x]);
  }
  int prv(int x) { return h[rep(x)]; }
  void erase(int x) { merge(x - 1, x); }
  void merge(int x, int y) {
    x = rep(x), y = rep(y);
    if(x != y) {
      if (sz[x] < sz[y]) swap(x, y);
      par[y] = x;
      h[x] = min(h[x], h[y]);
      sz[x] += sz[y];
    }
  }
} redl, bluel;
int main() {
  ios_base::sync_with_stdio(0); cin.tie(NULL);
  int n;
  cin >> n;
  int a[2 * n + 5];
  for(int i = 1; i <= 2 * n; ++i)
    cin >> a[i];
  int b[n + 5], c[n + 5];
  for(int i = 1; i <= n; ++i)
    cin >> b[i];
  for(int i = 1; i <= n; ++i)
    cin >> c[i];
  sort(b + 1, b + n + 1);
  sort(c + 1, c + n + 1);
  int l = 0, r = 1e9, res = -1;
  vector<pair<int, int>> v;
  for(int i = 1; i <= 2 * n; ++i)
    v.pb(mp(a[i], i));
  sort(v.begin(), v.end());
  pair<int, int> validb[2 * n + 5], validr[2 * n + 5];
  while(l <= r) {
    memset(cur.a, 0, sizeof(cur.a));
    redl.reset();
    redr.reset();
    bluel.reset();
    bluer.reset();
    int mid = (l + r) >> 1;
    // max diff -> mid
    // try each partition what is the max diff
    // nanti ada banyak validity test, tinggal cek validity testnya mana aja
    for(int i = 1; i <= 2 * n; ++i) {
      // idx of element >= a[i] - mid
      validb[i].fi = lower_bound(b + 1, b + n + 1, a[i] - mid) - b;
      // idx of element <= a[i] + mid
      validb[i].se = upper_bound(b + 1, b + n + 1, a[i] + mid) - b - 1;
      // idx of element >= a[i] - mid
      validr[i].fi = lower_bound(c + 1, c + n + 1, a[i] - mid) - c;
      // idx of element <= a[i] + mid
      validr[i].se = upper_bound(c + 1, c + n + 1, a[i] + mid) - c - 1;
      // if(mid == 1) {
      //   cerr << a[i] + mid << " " << upper_bound(c + 1, c + n + 1, a[i] + mid) - c - 1 << " " << validr[i].se << endl;
      // }
    }
    // cerr << "TEST" << endl;
    for(auto p : v) {
      // process
      // cerr << "UPDATE" << endl;
      cur.update(max(1, p.se - n + 1), p.se, 1);
      // observe that blue on left/right of that segment can be invalid
      int idx = p.se;
      // cerr << "TEST" << endl;
      int val;
      while((val = bluer.nxt(max(1, p.se - n + 1))) <= p.se && val > 0) {
        int tmp2 = cur.query(val);
        if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
          bluer.erase(val), bluel.erase(val);
        else
          break;
      }
      while((val = bluel.prv(p.se)) >= max(1, p.se - n + 1)) {
        int tmp2 = cur.query(val);
        if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
          bluer.erase(val), bluel.erase(val);
        else
          break;
      }
      // cerr << "DONE" << endl;
      if(p.se <= n) {
        cur.update(p.se + n + 1, 2 * n, 1);
        // observe that blue on left/right of that segment can be invalid
        while((val = bluer.nxt(p.se + n + 1)) <= 2 * n) {
          // cerr << val << endl;
          int tmp2 = cur.query(val);
          // cerr << "AFTER" << endl;
          if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se) {
            bluer.erase(val), bluel.erase(val);
            // cerr << "HERE" << endl;
          }
          else
            break;
        }
        // cerr << "CHECK" << endl;
        while((val = bluel.prv(2 * n)) >= p.se + n + 1) {
          // cerr << val << endl;
          int tmp2 = cur.query(val);
          if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
            bluer.erase(val), bluel.erase(val);
          else
            break;
        } 
      }
      // cerr << "TEST2" << endl;
      while((val = redr.nxt(max(1, p.se - n + 1))) <= p.se && val > 0) {
        // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].fi << endl; 
        int tmp2 = cur.query(val);
        if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
          redr.erase(val), redl.erase(val);
        else
          break;
      }
      while((val = redl.prv(p.se)) >= max(1, p.se - n + 1)) {
        // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].se << endl; 
        int tmp2 = cur.query(val);
        if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
          redr.erase(val), redl.erase(val);
        else
          break;
      }
      if(p.se <= n) {
        // observe that red on left/right of that segment can be invalid
        while((val = redr.nxt(p.se + n + 1)) <= 2 * n) {
          // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].fi << endl; 
          int tmp2 = cur.query(val);
          if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
            redr.erase(val), redl.erase(val);
          else
            break;
        }
        while((val = redl.prv(2 * n)) >= p.se + n + 1) {
          // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].se << endl; 
          int tmp2 = cur.query(val);
          if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
            redr.erase(val), redl.erase(val);
          else
            break;
        } 
      }
      // cerr << "FINISH" << endl;
    }
    // blue and red have to complement each other
    bool ans = 0;
    // cerr << "MID IS " << mid << endl;
    for(int i = 1; i + n <= 2 * n; ++i) {
      // cerr << i << " " << i + n << endl;
      // cerr << bluel.prv(i) << " " << bluel.prv(i + n) << endl;
      // cerr << redl.prv(i) << " " << redl.prv(i + n) << endl;
      if((bluel.prv(i) == i && redl.prv(i + n) == i + n) || (redl.prv(i) == i && bluel.prv(i + n) == i + n))
        ans = 1;
      // cerr << "DONE" << endl;
    }
    /*
    if(mid <= 20) {
      cerr << "DEBUG " << mid << endl;
      for(auto x : red) {
        cerr << x << " ";
      }
      cerr << endl;
      for(auto x : blue) {
        cerr << x << " ";
      }
      cerr << endl;
    }
    */
    if(ans) 
      r = mid - 1, res = mid;
    else
      l = mid + 1;
  }
  cout << res << endl;
  // choose a contiguous segment L to R such that we use one color
  // N^2 approach -> pair greedily (sorted)
  // int res = 1e9;
  // for(int i = 1; i + n <= 2 * n + 1; ++i) {
  //   vector<int> blue, red;
  //   for(int j = 1; j < i; ++j) {
  //     blue.pb(a[j]);
  //   }
  //   for(int j = i; j < i + n; ++j) {
  //     red.pb(a[j]);
  //   }
  //   for(int j = i + n; j <= 2 * n; ++j) {
  //     blue.pb(a[j]);
  //   }
  //   sort(blue.begin(), blue.end());
  //   sort(red.begin(), red.end());
  //   int mx = 0;
  //   for(int k = 1; k <= n; ++k) {
  //     mx = max({mx, abs(blue[k - 1] - b[k]), abs(red[k - 1] - c[k])});
  //   }
  //   res = min(res, mx);
  //   mx = 0;
  //   swap(red, blue);
  //   for(int k = 1; k <= n; ++k) {
  //     mx = max({mx, abs(blue[k - 1] - b[k]), abs(red[k - 1] - c[k])});
  //   }
  //   res = min(res, mx);
  // }
  // cout << res << endl;
  return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 41 ms 30812 KB Output is correct
2 Correct 38 ms 30808 KB Output is correct
3 Correct 38 ms 30808 KB Output is correct
4 Correct 40 ms 30808 KB Output is correct
5 Correct 35 ms 30812 KB Output is correct
6 Correct 44 ms 30812 KB Output is correct
7 Correct 41 ms 30760 KB Output is correct
8 Correct 40 ms 30808 KB Output is correct
9 Correct 40 ms 30812 KB Output is correct
10 Correct 39 ms 31320 KB Output is correct
11 Correct 37 ms 30812 KB Output is correct
12 Correct 35 ms 30812 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 30812 KB Output is correct
2 Correct 38 ms 30808 KB Output is correct
3 Correct 38 ms 30808 KB Output is correct
4 Correct 40 ms 30808 KB Output is correct
5 Correct 35 ms 30812 KB Output is correct
6 Correct 44 ms 30812 KB Output is correct
7 Correct 41 ms 30760 KB Output is correct
8 Correct 40 ms 30808 KB Output is correct
9 Correct 40 ms 30812 KB Output is correct
10 Correct 39 ms 31320 KB Output is correct
11 Correct 37 ms 30812 KB Output is correct
12 Correct 35 ms 30812 KB Output is correct
13 Correct 39 ms 30812 KB Output is correct
14 Correct 34 ms 30812 KB Output is correct
15 Correct 38 ms 30808 KB Output is correct
16 Correct 38 ms 30808 KB Output is correct
17 Correct 40 ms 30808 KB Output is correct
18 Correct 36 ms 30808 KB Output is correct
19 Correct 38 ms 30808 KB Output is correct
20 Correct 38 ms 30812 KB Output is correct
21 Correct 36 ms 30812 KB Output is correct
22 Correct 36 ms 30812 KB Output is correct
23 Correct 37 ms 30808 KB Output is correct
24 Correct 34 ms 30808 KB Output is correct
25 Correct 32 ms 30808 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 30812 KB Output is correct
2 Correct 38 ms 30808 KB Output is correct
3 Correct 38 ms 30808 KB Output is correct
4 Correct 40 ms 30808 KB Output is correct
5 Correct 35 ms 30812 KB Output is correct
6 Correct 44 ms 30812 KB Output is correct
7 Correct 41 ms 30760 KB Output is correct
8 Correct 40 ms 30808 KB Output is correct
9 Correct 40 ms 30812 KB Output is correct
10 Correct 39 ms 31320 KB Output is correct
11 Correct 37 ms 30812 KB Output is correct
12 Correct 35 ms 30812 KB Output is correct
13 Correct 39 ms 30812 KB Output is correct
14 Correct 34 ms 30812 KB Output is correct
15 Correct 38 ms 30808 KB Output is correct
16 Correct 38 ms 30808 KB Output is correct
17 Correct 40 ms 30808 KB Output is correct
18 Correct 36 ms 30808 KB Output is correct
19 Correct 38 ms 30808 KB Output is correct
20 Correct 38 ms 30812 KB Output is correct
21 Correct 36 ms 30812 KB Output is correct
22 Correct 36 ms 30812 KB Output is correct
23 Correct 37 ms 30808 KB Output is correct
24 Correct 34 ms 30808 KB Output is correct
25 Correct 32 ms 30808 KB Output is correct
26 Correct 64 ms 31068 KB Output is correct
27 Correct 63 ms 31116 KB Output is correct
28 Correct 61 ms 31112 KB Output is correct
29 Correct 37 ms 30812 KB Output is correct
30 Correct 63 ms 31116 KB Output is correct
31 Correct 61 ms 31068 KB Output is correct
32 Correct 44 ms 30812 KB Output is correct
33 Correct 42 ms 30812 KB Output is correct
34 Correct 53 ms 31068 KB Output is correct
35 Correct 59 ms 31068 KB Output is correct
36 Correct 67 ms 31068 KB Output is correct
37 Correct 58 ms 31064 KB Output is correct
38 Correct 58 ms 31112 KB Output is correct
39 Correct 55 ms 31068 KB Output is correct
40 Correct 61 ms 31068 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4752 ms 51364 KB Output is correct
2 Correct 4312 ms 51116 KB Output is correct
3 Correct 3803 ms 46524 KB Output is correct
4 Correct 3924 ms 50872 KB Output is correct
5 Correct 3970 ms 51636 KB Output is correct
6 Correct 166 ms 31712 KB Output is correct
7 Correct 3578 ms 50872 KB Output is correct
8 Correct 3902 ms 50872 KB Output is correct
9 Correct 3920 ms 50360 KB Output is correct
10 Correct 4057 ms 50360 KB Output is correct
11 Correct 4113 ms 50100 KB Output is correct
12 Correct 4017 ms 51264 KB Output is correct
13 Correct 4281 ms 51632 KB Output is correct
14 Correct 3950 ms 49808 KB Output is correct
15 Correct 4127 ms 50360 KB Output is correct
16 Correct 3923 ms 51644 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 30812 KB Output is correct
2 Correct 38 ms 30808 KB Output is correct
3 Correct 38 ms 30808 KB Output is correct
4 Correct 40 ms 30808 KB Output is correct
5 Correct 35 ms 30812 KB Output is correct
6 Correct 44 ms 30812 KB Output is correct
7 Correct 41 ms 30760 KB Output is correct
8 Correct 40 ms 30808 KB Output is correct
9 Correct 40 ms 30812 KB Output is correct
10 Correct 39 ms 31320 KB Output is correct
11 Correct 37 ms 30812 KB Output is correct
12 Correct 35 ms 30812 KB Output is correct
13 Correct 39 ms 30812 KB Output is correct
14 Correct 34 ms 30812 KB Output is correct
15 Correct 38 ms 30808 KB Output is correct
16 Correct 38 ms 30808 KB Output is correct
17 Correct 40 ms 30808 KB Output is correct
18 Correct 36 ms 30808 KB Output is correct
19 Correct 38 ms 30808 KB Output is correct
20 Correct 38 ms 30812 KB Output is correct
21 Correct 36 ms 30812 KB Output is correct
22 Correct 36 ms 30812 KB Output is correct
23 Correct 37 ms 30808 KB Output is correct
24 Correct 34 ms 30808 KB Output is correct
25 Correct 32 ms 30808 KB Output is correct
26 Correct 64 ms 31068 KB Output is correct
27 Correct 63 ms 31116 KB Output is correct
28 Correct 61 ms 31112 KB Output is correct
29 Correct 37 ms 30812 KB Output is correct
30 Correct 63 ms 31116 KB Output is correct
31 Correct 61 ms 31068 KB Output is correct
32 Correct 44 ms 30812 KB Output is correct
33 Correct 42 ms 30812 KB Output is correct
34 Correct 53 ms 31068 KB Output is correct
35 Correct 59 ms 31068 KB Output is correct
36 Correct 67 ms 31068 KB Output is correct
37 Correct 58 ms 31064 KB Output is correct
38 Correct 58 ms 31112 KB Output is correct
39 Correct 55 ms 31068 KB Output is correct
40 Correct 61 ms 31068 KB Output is correct
41 Correct 4752 ms 51364 KB Output is correct
42 Correct 4312 ms 51116 KB Output is correct
43 Correct 3803 ms 46524 KB Output is correct
44 Correct 3924 ms 50872 KB Output is correct
45 Correct 3970 ms 51636 KB Output is correct
46 Correct 166 ms 31712 KB Output is correct
47 Correct 3578 ms 50872 KB Output is correct
48 Correct 3902 ms 50872 KB Output is correct
49 Correct 3920 ms 50360 KB Output is correct
50 Correct 4057 ms 50360 KB Output is correct
51 Correct 4113 ms 50100 KB Output is correct
52 Correct 4017 ms 51264 KB Output is correct
53 Correct 4281 ms 51632 KB Output is correct
54 Correct 3950 ms 49808 KB Output is correct
55 Correct 4127 ms 50360 KB Output is correct
56 Correct 3923 ms 51644 KB Output is correct
57 Execution timed out 5037 ms 50312 KB Time limit exceeded
58 Halted 0 ms 0 KB -