Submission #1074452

# Submission time Handle Problem Language Result Execution time Memory
1074452 2024-08-25T10:35:01 Z joelgun14 Growing Vegetables is Fun 5 (JOI24_vegetables5) C++17
30 / 100
5000 ms 34444 KB
// header file
#include <bits/stdc++.h>
// pragma
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#pragma GCC opitmize("Ofast")
#pragma GCC opitmize("unroll-loops")
// macros
#define endl "\n"
#define ll long long
#define mp make_pair
#define ins insert
#define lb lower_bound
#define pb push_back
#define ub upper_bound
#define lll __int128
#define fi first
#define se second
using namespace std;
const int lim = 6e5 + 5;
struct fenwick {
  int a[lim];
  fenwick() {
    memset(a, 0, sizeof(a));
  }
  void update(int idx, int val) {
    // cerr << idx << endl;
    while(idx < lim) {
      a[idx] += val;
      idx += idx&-idx;
    }
  }
  void update(int l, int r, int val) {
    if(l > r)
      return;
    update(l, val);
    update(r + 1, -val);
  }
  int query(int idx) {
    if(idx >= lim)
      idx = lim - 1;
    int res = 0;
    while(idx) {
      res += a[idx];
      idx -= idx&-idx;
    }
    return res;
  }
} cur;
struct disjoint_setr {
  int h[lim];
  void reset() {
    memset(h, -1, sizeof(h));
  }
  disjoint_setr() {
    reset();
  }
  int nxt(int x) {
    return h[x] == -1 ? x : h[x] = nxt(h[x]);
  }
  void erase(int x) {
    merge(x, x + 1);
  }
  void merge(int x, int y) {
    x = nxt(x), y = nxt(y);
    if(x != y) {
      if(x < y)
        swap(x, y);
      h[y] = x;
    }
  }
} redr, bluer;
struct disjoint_setl {
  int h[lim];
  void reset() {
    memset(h, -1, sizeof(h));
  }
  disjoint_setl() {
    reset();
  }
  int prv(int x) {
    return h[x] == -1 ? x : h[x] = prv(h[x]);
  }
  void erase(int x) {
    merge(x - 1, x);
  }
  void merge(int x, int y) {
    x = prv(x), y = prv(y);
    if(x != y) {
      if(x > y)
        swap(x, y);
      h[y] = x;
    }
  }
} redl, bluel;
int main() {
  ios_base::sync_with_stdio(0); cin.tie(NULL);
  int n;
  cin >> n;
  int a[2 * n + 5];
  for(int i = 1; i <= 2 * n; ++i)
    cin >> a[i];
  int b[n + 5], c[n + 5];
  for(int i = 1; i <= n; ++i)
    cin >> b[i];
  for(int i = 1; i <= n; ++i)
    cin >> c[i];
  sort(b + 1, b + n + 1);
  sort(c + 1, c + n + 1);
  int l = 0, r = 1e9, res = -1;
  vector<pair<int, int>> v;
  for(int i = 1; i <= 2 * n; ++i)
    v.pb(mp(a[i], i));
  sort(v.begin(), v.end());
  pair<int, int> validb[2 * n + 5], validr[2 * n + 5];
  while(l <= r) {
    memset(cur.a, 0, sizeof(cur.a));
    redl.reset();
    redr.reset();
    bluel.reset();
    bluer.reset();
    int mid = (l + r) >> 1;
    // max diff -> mid
    // try each partition what is the max diff
    // nanti ada banyak validity test, tinggal cek validity testnya mana aja
    for(int i = 1; i <= 2 * n; ++i) {
      // idx of element >= a[i] - mid
      validb[i].fi = lower_bound(b + 1, b + n + 1, a[i] - mid) - b;
      // idx of element <= a[i] + mid
      validb[i].se = upper_bound(b + 1, b + n + 1, a[i] + mid) - b - 1;
      // idx of element >= a[i] - mid
      validr[i].fi = lower_bound(c + 1, c + n + 1, a[i] - mid) - c;
      // idx of element <= a[i] + mid
      validr[i].se = upper_bound(c + 1, c + n + 1, a[i] + mid) - c - 1;
      // if(mid == 1) {
      //   cerr << a[i] + mid << " " << upper_bound(c + 1, c + n + 1, a[i] + mid) - c - 1 << " " << validr[i].se << endl;
      // }
    }
    // cerr << "TEST" << endl;
    for(auto p : v) {
      // process
      // cerr << "UPDATE" << endl;
      cur.update(max(1, p.se - n + 1), p.se, 1);
      // observe that blue on left/right of that segment can be invalid
      int idx = p.se;
      // cerr << "TEST" << endl;
      int val;
      while((val = bluer.nxt(max(1, p.se - n + 1))) <= p.se && val > 0) {
        int tmp2 = cur.query(val);
        if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
          bluer.erase(val), bluel.erase(val);
        else
          break;
      }
      while((val = bluel.prv(p.se)) >= max(1, p.se - n + 1)) {
        int tmp2 = cur.query(val);
        if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
          bluer.erase(val), bluel.erase(val);
        else
          break;
      }
      // cerr << "DONE" << endl;
      if(p.se <= n) {
        cur.update(p.se + n + 1, 2 * n, 1);
        // observe that blue on left/right of that segment can be invalid
        while((val = bluer.nxt(p.se + n + 1)) <= 2 * n) {
          // cerr << val << endl;
          int tmp2 = cur.query(val);
          // cerr << "AFTER" << endl;
          if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se) {
            bluer.erase(val), bluel.erase(val);
            // cerr << "HERE" << endl;
          }
          else
            break;
        }
        // cerr << "CHECK" << endl;
        while((val = bluel.prv(2 * n)) >= p.se + n + 1) {
          // cerr << val << endl;
          int tmp2 = cur.query(val);
          if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
            bluer.erase(val), bluel.erase(val);
          else
            break;
        } 
      }
      // cerr << "TEST2" << endl;
      while((val = redr.nxt(max(1, p.se - n + 1))) <= p.se && val > 0) {
        // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].fi << endl; 
        int tmp2 = cur.query(val);
        if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
          redr.erase(val), redl.erase(val);
        else
          break;
      }
      while((val = redl.prv(p.se)) >= max(1, p.se - n + 1)) {
        // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].se << endl; 
        int tmp2 = cur.query(val);
        if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
          redr.erase(val), redl.erase(val);
        else
          break;
      }
      if(p.se <= n) {
        // observe that red on left/right of that segment can be invalid
        while((val = redr.nxt(p.se + n + 1)) <= 2 * n) {
          // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].fi << endl; 
          int tmp2 = cur.query(val);
          if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
            redr.erase(val), redl.erase(val);
          else
            break;
        }
        while((val = redl.prv(2 * n)) >= p.se + n + 1) {
          // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].se << endl; 
          int tmp2 = cur.query(val);
          if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se)
            redr.erase(val), redl.erase(val);
          else
            break;
        } 
      }
      // cerr << "FINISH" << endl;
    }
    // blue and red have to complement each other
    bool ans = 0;
    // cerr << "MID IS " << mid << endl;
    for(int i = 1; i + n <= 2 * n; ++i) {
      // cerr << i << " " << i + n << endl;
      // cerr << bluel.prv(i) << " " << bluel.prv(i + n) << endl;
      // cerr << redl.prv(i) << " " << redl.prv(i + n) << endl;
      if((bluel.prv(i) == i && redl.prv(i + n) == i + n) || (redl.prv(i) == i && bluel.prv(i + n) == i + n))
        ans = 1;
      // cerr << "DONE" << endl;
    }
    /*
    if(mid <= 20) {
      cerr << "DEBUG " << mid << endl;
      for(auto x : red) {
        cerr << x << " ";
      }
      cerr << endl;
      for(auto x : blue) {
        cerr << x << " ";
      }
      cerr << endl;
    }
    */
    if(ans) 
      r = mid - 1, res = mid;
    else
      l = mid + 1;
  }
  cout << res << endl;
  // choose a contiguous segment L to R such that we use one color
  // N^2 approach -> pair greedily (sorted)
  // int res = 1e9;
  // for(int i = 1; i + n <= 2 * n + 1; ++i) {
  //   vector<int> blue, red;
  //   for(int j = 1; j < i; ++j) {
  //     blue.pb(a[j]);
  //   }
  //   for(int j = i; j < i + n; ++j) {
  //     red.pb(a[j]);
  //   }
  //   for(int j = i + n; j <= 2 * n; ++j) {
  //     blue.pb(a[j]);
  //   }
  //   sort(blue.begin(), blue.end());
  //   sort(red.begin(), red.end());
  //   int mx = 0;
  //   for(int k = 1; k <= n; ++k) {
  //     mx = max({mx, abs(blue[k - 1] - b[k]), abs(red[k - 1] - c[k])});
  //   }
  //   res = min(res, mx);
  //   mx = 0;
  //   swap(red, blue);
  //   for(int k = 1; k <= n; ++k) {
  //     mx = max({mx, abs(blue[k - 1] - b[k]), abs(red[k - 1] - c[k])});
  //   }
  //   res = min(res, mx);
  // }
  // cout << res << endl;
  return 0;
}

Compilation message

Main.cpp:5: warning: ignoring '#pragma GCC opitmize' [-Wunknown-pragmas]
    5 | #pragma GCC opitmize("Ofast")
      | 
Main.cpp:6: warning: ignoring '#pragma GCC opitmize' [-Wunknown-pragmas]
    6 | #pragma GCC opitmize("unroll-loops")
      |
# Verdict Execution time Memory Grader output
1 Correct 12 ms 12120 KB Output is correct
2 Correct 9 ms 12192 KB Output is correct
3 Correct 10 ms 12192 KB Output is correct
4 Correct 10 ms 12148 KB Output is correct
5 Correct 10 ms 12124 KB Output is correct
6 Correct 11 ms 12124 KB Output is correct
7 Correct 10 ms 12124 KB Output is correct
8 Correct 11 ms 11948 KB Output is correct
9 Correct 9 ms 12124 KB Output is correct
10 Correct 9 ms 12196 KB Output is correct
11 Correct 9 ms 12124 KB Output is correct
12 Correct 9 ms 12196 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 12120 KB Output is correct
2 Correct 9 ms 12192 KB Output is correct
3 Correct 10 ms 12192 KB Output is correct
4 Correct 10 ms 12148 KB Output is correct
5 Correct 10 ms 12124 KB Output is correct
6 Correct 11 ms 12124 KB Output is correct
7 Correct 10 ms 12124 KB Output is correct
8 Correct 11 ms 11948 KB Output is correct
9 Correct 9 ms 12124 KB Output is correct
10 Correct 9 ms 12196 KB Output is correct
11 Correct 9 ms 12124 KB Output is correct
12 Correct 9 ms 12196 KB Output is correct
13 Correct 9 ms 12152 KB Output is correct
14 Correct 10 ms 12120 KB Output is correct
15 Correct 10 ms 12124 KB Output is correct
16 Correct 10 ms 12124 KB Output is correct
17 Correct 9 ms 12124 KB Output is correct
18 Correct 11 ms 12124 KB Output is correct
19 Correct 11 ms 12120 KB Output is correct
20 Correct 11 ms 12200 KB Output is correct
21 Correct 9 ms 12124 KB Output is correct
22 Correct 10 ms 12196 KB Output is correct
23 Correct 10 ms 12376 KB Output is correct
24 Correct 10 ms 12192 KB Output is correct
25 Correct 11 ms 12124 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 12120 KB Output is correct
2 Correct 9 ms 12192 KB Output is correct
3 Correct 10 ms 12192 KB Output is correct
4 Correct 10 ms 12148 KB Output is correct
5 Correct 10 ms 12124 KB Output is correct
6 Correct 11 ms 12124 KB Output is correct
7 Correct 10 ms 12124 KB Output is correct
8 Correct 11 ms 11948 KB Output is correct
9 Correct 9 ms 12124 KB Output is correct
10 Correct 9 ms 12196 KB Output is correct
11 Correct 9 ms 12124 KB Output is correct
12 Correct 9 ms 12196 KB Output is correct
13 Correct 9 ms 12152 KB Output is correct
14 Correct 10 ms 12120 KB Output is correct
15 Correct 10 ms 12124 KB Output is correct
16 Correct 10 ms 12124 KB Output is correct
17 Correct 9 ms 12124 KB Output is correct
18 Correct 11 ms 12124 KB Output is correct
19 Correct 11 ms 12120 KB Output is correct
20 Correct 11 ms 12200 KB Output is correct
21 Correct 9 ms 12124 KB Output is correct
22 Correct 10 ms 12196 KB Output is correct
23 Correct 10 ms 12376 KB Output is correct
24 Correct 10 ms 12192 KB Output is correct
25 Correct 11 ms 12124 KB Output is correct
26 Correct 38 ms 12376 KB Output is correct
27 Correct 45 ms 12360 KB Output is correct
28 Correct 37 ms 12124 KB Output is correct
29 Correct 12 ms 12124 KB Output is correct
30 Correct 40 ms 12380 KB Output is correct
31 Correct 36 ms 12356 KB Output is correct
32 Correct 25 ms 12124 KB Output is correct
33 Correct 18 ms 12236 KB Output is correct
34 Correct 36 ms 12380 KB Output is correct
35 Correct 39 ms 12376 KB Output is correct
36 Correct 55 ms 12376 KB Output is correct
37 Correct 36 ms 12376 KB Output is correct
38 Correct 34 ms 12380 KB Output is correct
39 Correct 34 ms 12220 KB Output is correct
40 Correct 37 ms 12124 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5033 ms 34444 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 12 ms 12120 KB Output is correct
2 Correct 9 ms 12192 KB Output is correct
3 Correct 10 ms 12192 KB Output is correct
4 Correct 10 ms 12148 KB Output is correct
5 Correct 10 ms 12124 KB Output is correct
6 Correct 11 ms 12124 KB Output is correct
7 Correct 10 ms 12124 KB Output is correct
8 Correct 11 ms 11948 KB Output is correct
9 Correct 9 ms 12124 KB Output is correct
10 Correct 9 ms 12196 KB Output is correct
11 Correct 9 ms 12124 KB Output is correct
12 Correct 9 ms 12196 KB Output is correct
13 Correct 9 ms 12152 KB Output is correct
14 Correct 10 ms 12120 KB Output is correct
15 Correct 10 ms 12124 KB Output is correct
16 Correct 10 ms 12124 KB Output is correct
17 Correct 9 ms 12124 KB Output is correct
18 Correct 11 ms 12124 KB Output is correct
19 Correct 11 ms 12120 KB Output is correct
20 Correct 11 ms 12200 KB Output is correct
21 Correct 9 ms 12124 KB Output is correct
22 Correct 10 ms 12196 KB Output is correct
23 Correct 10 ms 12376 KB Output is correct
24 Correct 10 ms 12192 KB Output is correct
25 Correct 11 ms 12124 KB Output is correct
26 Correct 38 ms 12376 KB Output is correct
27 Correct 45 ms 12360 KB Output is correct
28 Correct 37 ms 12124 KB Output is correct
29 Correct 12 ms 12124 KB Output is correct
30 Correct 40 ms 12380 KB Output is correct
31 Correct 36 ms 12356 KB Output is correct
32 Correct 25 ms 12124 KB Output is correct
33 Correct 18 ms 12236 KB Output is correct
34 Correct 36 ms 12380 KB Output is correct
35 Correct 39 ms 12376 KB Output is correct
36 Correct 55 ms 12376 KB Output is correct
37 Correct 36 ms 12376 KB Output is correct
38 Correct 34 ms 12380 KB Output is correct
39 Correct 34 ms 12220 KB Output is correct
40 Correct 37 ms 12124 KB Output is correct
41 Execution timed out 5033 ms 34444 KB Time limit exceeded
42 Halted 0 ms 0 KB -