Submission #107444

# Submission time Handle Problem Language Result Execution time Memory
107444 2019-04-24T11:19:23 Z szawinis Amusement Park (JOI17_amusement_park) C++17
100 / 100
150 ms 5760 KB
#include "Joi.h"
#include <bits/stdc++.h>
using namespace std;
const int N = 1e4+1;

struct Solver_Joi {
    int n, m, mxd, mxdv, color[N], last[N];
    long long X;
    vector<int> g1[N], g2[N];

    bool vis[N];
    int par[N], depth[N];
    void init_dfs(int u) {
        vis[u] = true;
        if(depth[u] > mxd) {
            mxd = depth[u];
            mxdv = u;
        }
        for(int v: g1[u]) {
            if(vis[v]) continue;
            g2[u].push_back(v);
            par[v] = u;
            depth[v] = depth[u] + 1;
            init_dfs(v);
        }
    }

    void colorBig(int u) {
        color[u] = depth[u] % 60;
        for(int v: g2[u]) {
            colorBig(v);
        }
    }

    int curr_count;
    int st[N];
    vector<int> ord;

    void prepColorSmall1(int u) {
        color[u] = (curr_count >= 60 ? -1 : curr_count);
        ++curr_count;

        if (color[u] != -1) {
            st[u] = ord.size();
            ord.push_back(u);
        }

        for (int v: g2[u]) {
            prepColorSmall1(v);
            if(color[u] != -1 && ord.back() != u) ord.push_back(u);
        }
    }

    void solve() {
        par[0] = -1;
        fill(color, color+N, -1);
        fill(last, last+N, -1);
        init_dfs(0);

        if(mxd >= 59) {
            colorBig(0);
            for(int i = 0; i < n; i++) {
                assert(color[i] != -1 && 0 <= color[i] && color[i] < 60);
                MessageBoard(i, X >> color[i] & 1);
            }
            return;
        }

        prepColorSmall1(0);
//        for(int x: ord) cerr << x << ' ';
//        cerr << endl;

        for(int i = 0; i < n; i++) {
            last[i] = i;
            while(color[last[i]] == -1) last[i] = par[last[i]];
        }

        vector<int> sortByDepth;
        for(int i = 0; i < n; i++) sortByDepth.push_back(i);
        sort(sortByDepth.begin(), sortByDepth.end(), [&] (int i, int j) { return depth[i] < depth[j]; });
        for(int i: sortByDepth) {
            if(color[i] != -1) continue;

            int idx = st[last[i]];
            int depth_diff = depth[i] - depth[last[i]];

            set<int> distinct_mods;
            while(distinct_mods.size() < 60 - depth_diff) {
                distinct_mods.insert(color[ord[idx]]);
                idx = (idx + 1) % ord.size();
            }
//
//            if(i == 465) {
//                cerr << last[465] << ' ' << depth[465] << ' ' << depth[last[465]] << endl;
//                for(int x: distinct_mods) cerr << x << ' ';
//                cerr << endl;
//            }
//            if(i == par[465]) {
//                cerr << last[i] << ' ' << depth[i] << ' ' << depth[last[i]] << endl;
//                for(int x: distinct_mods) cerr << x << ' ';
//                cerr<< endl;
//            }

            for(int v = par[i]; v != last[v]; v = par[v]) {
                assert(color[v] != -1);
                distinct_mods.insert(color[v]);
            }

            for(int mod = 0; mod < 60; mod++) {
                if(!distinct_mods.count(mod)) {
                    color[i] = mod;
                    break;
                }
            }
            assert(ord[st[last[i]]] == last[i]);

//            cerr << i << ' ' << last[i] << ' ' << color[i] << endl;
        }

        for(int i = 0; i < n; i++) {
            assert(color[i] != -1 && 0 <= color[i] && color[i] < 60);
            MessageBoard(i, X >> color[i] & 1);
        }
    }

    Solver_Joi(int n, int m, long long X, int A[], int B[]): n(n), m(m), X(X) {
        for(int i = 0; i < m; i++) {
            g1[A[i]].push_back(B[i]);
            g1[B[i]].push_back(A[i]);
        }
    }
};

void Joi(int n, int m, int A[], int B[], long long X, int T) {
    Solver_Joi *solver = new Solver_Joi(n, m, X, A, B);
    solver->solve();
}
#include "Ioi.h"
#include <bits/stdc++.h>
using namespace std;
const int N = 1e4+1;

struct Solver_Ioi {
    int n, m, mxd, mxdv, P, V, color[N], last[N];
    long long X;
    vector<int> g1[N], g2[N];

    bool vis[N];
    int par[N], depth[N];

    void init_dfs(int u) {
        vis[u] = true;
        if (depth[u] > mxd) {
            mxd = depth[u];
            mxdv = u;
        }
        for (int v: g1[u]) {
            if (vis[v]) continue;
            g2[u].push_back(v);
            par[v] = u;
            depth[v] = depth[u] + 1;
            init_dfs(v);
        }
    }

    void colorBig(int u) {
        color[u] = depth[u] % 60;
        for (int v: g2[u]) {
            colorBig(v);
        }
    }

    int curr_count;
    int st[N];
    vector<int> ord;

    void prepColorSmall1(int u) {
        color[u] = (curr_count >= 60 ? -1 : curr_count);
        ++curr_count;

        if (color[u] != -1) {
            st[u] = ord.size();
            ord.push_back(u);
        }

        for (int v: g2[u]) {
            prepColorSmall1(v);
            if(color[u] != -1 && ord.back() != u) ord.push_back(u);
        }
    }

    void traverseUp(int v, int offset, set<int> &distinct_mods) { // check both cases where v is in top set and bottom set
        assert(v == last[v]);
        int idx = st[v];
        while(distinct_mods.size() < 60 - offset) {
            long long tmp = Move(ord[idx]);
            assert(color[ord[idx]] != -1);
            X |= tmp << color[ord[idx]];
            distinct_mods.insert(color[ord[idx]]);
            idx = (idx + 1) % ord.size();
        }
        // is this inclusive or exclusive?
        // this function assumes that v has not been visited yet
    }

    void solve() {
        par[0] = -1;
        fill(color, color + N, -1);
        fill(last, last + N, -1);
        init_dfs(0);

        if (mxd >= 59) {
            set<int> distinct_mods;
            colorBig(0);
            distinct_mods.insert(color[P]);
            X |= 1ll * V << color[P];
            for(int v = par[P]; v >= 0 && distinct_mods.size() < 60; v = par[v]) {
                long long tmp = Move(v);
                distinct_mods.insert(color[v]);
                X |= tmp << color[v];
            }
            vector<int> ord;
            for(int v = mxdv; v > 0; v = par[v]) ord.push_back(v);
            reverse(ord.begin(), ord.end());
            for(int v: ord) {
                if(distinct_mods.size() >= 60) break;
                long long tmp = Move(v);
                distinct_mods.insert(color[v]);
                X |= tmp << color[v];
//                for(int x: distinct_mods) cerr << x << ' ';
//                cerr << endl;
            }
            return;
        }

        prepColorSmall1(0);
        ord.pop_back();
//        for(int x: ord) cerr << x << ' ';
//        cerr << endl;

        for (int i = 0; i < n; i++) {
            last[i] = i;
            while (color[last[i]] == -1) last[i] = par[last[i]];
        }

        vector<int> sortByDepth;
        for(int i = 0; i < n; i++) sortByDepth.push_back(i);
        sort(sortByDepth.begin(), sortByDepth.end(), [&] (int i, int j) { return depth[i] < depth[j]; });
        for(int i: sortByDepth) {
            if(color[i] != -1) continue;

            int idx = st[last[i]];
            int depth_diff = depth[i] - depth[last[i]];

            set<int> distinct_mods;
            while(distinct_mods.size() < 60 - depth_diff) {
                distinct_mods.insert(color[ord[idx]]);
                idx = (idx + 1) % ord.size();
            }
//
//            if(i == 465) {
//                cerr << last[465] << ' ' << depth[465] << ' ' << depth[last[465]] << endl;
//                for(int x: distinct_mods) cerr << x << ' ';
//                cerr << endl;
//            }
//            if(i == par[465]) {
//                cerr << last[i] << ' ' << depth[i] << ' ' << depth[last[i]] << endl;
//                for(int x: distinct_mods) cerr << x << ' ';
//                cerr<< endl;
//            }

            for(int v = par[i]; v != last[v]; v = par[v]) {
                assert(color[v] != -1);
                distinct_mods.insert(color[v]);
            }

            for(int mod = 0; mod < 60; mod++) {
                if(!distinct_mods.count(mod)) {
                    color[i] = mod;
                    break;
                }
            }
            assert(ord[st[last[i]]] == last[i]);

//            cerr << i << ' ' << last[i] << ' ' << color[i] << endl;
        }

        set<int> distinct_mods;
        distinct_mods.insert(color[P]);
        X |= 1ll * V << color[P];

        if(last[P] == P) {
            int nxt = ord[(st[P] + 1) % ord.size()];
            assert(last[nxt] == nxt);
            traverseUp(nxt, 0, distinct_mods);
        } else {
            int v;
            for(v = par[P]; last[v] != v; v = par[v]) {
                assert(last[v] == last[P]);
                long long tmp = Move(v);
                distinct_mods.insert(color[v]);
                X |= tmp << color[v];
            }
            traverseUp(v, 0, distinct_mods);
        }

//        for(int v: ord) cerr << v << ' ' << color[v] << endl;
//        cerr << endl;
//        cerr << P << ' ' << color[P] << endl;

    }

    Solver_Ioi(int n, int m, int P, int V, int A[], int B[]) : n(n), m(m), P(P), V(V) {
        for (int i = 0; i < m; i++) {
            g1[A[i]].push_back(B[i]);
            g1[B[i]].push_back(A[i]);
        }
    }
};

long long Ioi(int n, int m, int A[], int B[], int P, int V, int T) {
    Solver_Ioi *solverIoi = new Solver_Ioi(n, m, P, V, A, B);
    solverIoi->solve();
    return solverIoi->X;
}

Compilation message

Joi.cpp: In member function 'void Solver_Joi::solve()':
Joi.cpp:88:40: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             while(distinct_mods.size() < 60 - depth_diff) {
                   ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~

Ioi.cpp: In member function 'void Solver_Ioi::traverseUp(int, int, std::set<int>&)':
Ioi.cpp:58:36: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while(distinct_mods.size() < 60 - offset) {
               ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~
Ioi.cpp: In member function 'void Solver_Ioi::solve()':
Ioi.cpp:119:40: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             while(distinct_mods.size() < 60 - depth_diff) {
                   ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 5 ms 1920 KB Output is correct
2 Correct 7 ms 1956 KB Output is correct
3 Correct 9 ms 2168 KB Output is correct
4 Correct 6 ms 1936 KB Output is correct
5 Correct 4 ms 1900 KB Output is correct
6 Correct 7 ms 1928 KB Output is correct
7 Correct 6 ms 2048 KB Output is correct
8 Correct 9 ms 2060 KB Output is correct
9 Correct 9 ms 2188 KB Output is correct
10 Correct 8 ms 2056 KB Output is correct
11 Correct 9 ms 2304 KB Output is correct
12 Correct 6 ms 1920 KB Output is correct
13 Correct 9 ms 2172 KB Output is correct
14 Correct 9 ms 2060 KB Output is correct
15 Correct 8 ms 1924 KB Output is correct
16 Correct 8 ms 2052 KB Output is correct
17 Correct 9 ms 2060 KB Output is correct
18 Correct 8 ms 2168 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 32 ms 5748 KB Output is correct
2 Correct 32 ms 5736 KB Output is correct
3 Correct 32 ms 5752 KB Output is correct
4 Correct 112 ms 4284 KB Output is correct
5 Correct 26 ms 4876 KB Output is correct
6 Correct 20 ms 4600 KB Output is correct
7 Correct 23 ms 4412 KB Output is correct
8 Correct 20 ms 4536 KB Output is correct
9 Correct 19 ms 4492 KB Output is correct
10 Correct 110 ms 4216 KB Output is correct
11 Correct 106 ms 4084 KB Output is correct
12 Correct 95 ms 4160 KB Output is correct
13 Correct 105 ms 3956 KB Output is correct
14 Correct 117 ms 4160 KB Output is correct
15 Correct 126 ms 4556 KB Output is correct
16 Correct 133 ms 4476 KB Output is correct
17 Correct 138 ms 4244 KB Output is correct
18 Correct 111 ms 4484 KB Output is correct
19 Correct 107 ms 4344 KB Output is correct
20 Correct 15 ms 4520 KB Output is correct
21 Correct 16 ms 4536 KB Output is correct
22 Correct 19 ms 4276 KB Output is correct
23 Correct 19 ms 4576 KB Output is correct
24 Correct 20 ms 4276 KB Output is correct
25 Correct 20 ms 4228 KB Output is correct
26 Correct 20 ms 4364 KB Output is correct
27 Correct 20 ms 4492 KB Output is correct
28 Correct 22 ms 4560 KB Output is correct
29 Correct 20 ms 4096 KB Output is correct
30 Correct 19 ms 4216 KB Output is correct
31 Correct 7 ms 2012 KB Output is correct
32 Correct 6 ms 1928 KB Output is correct
33 Correct 8 ms 2060 KB Output is correct
34 Correct 6 ms 2048 KB Output is correct
35 Correct 7 ms 1928 KB Output is correct
36 Correct 4 ms 1920 KB Output is correct
37 Correct 6 ms 2056 KB Output is correct
38 Correct 8 ms 1792 KB Output is correct
39 Correct 5 ms 1928 KB Output is correct
40 Correct 7 ms 1792 KB Output is correct
41 Correct 5 ms 1964 KB Output is correct
42 Correct 4 ms 2056 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 1920 KB Output is correct
2 Correct 7 ms 1940 KB Output is correct
3 Correct 6 ms 2084 KB Output is correct
4 Correct 8 ms 2340 KB Output is correct
5 Correct 9 ms 2488 KB Output is correct
6 Correct 8 ms 2488 KB Output is correct
7 Correct 6 ms 2460 KB Output is correct
8 Correct 8 ms 2484 KB Output is correct
9 Correct 18 ms 5400 KB Output is correct
10 Correct 17 ms 5552 KB Output is correct
11 Correct 16 ms 5456 KB Output is correct
12 Correct 5 ms 1928 KB Output is correct
13 Correct 5 ms 1920 KB Output is correct
14 Correct 6 ms 1792 KB Output is correct
15 Correct 5 ms 1792 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 38 ms 5732 KB Output is correct
2 Correct 34 ms 5740 KB Output is correct
3 Correct 32 ms 5744 KB Output is correct
4 Correct 128 ms 4388 KB Output is correct
5 Correct 30 ms 5036 KB Output is correct
6 Correct 26 ms 4496 KB Output is correct
7 Correct 19 ms 4536 KB Output is correct
8 Correct 19 ms 4248 KB Output is correct
9 Correct 20 ms 4456 KB Output is correct
10 Correct 113 ms 4168 KB Output is correct
11 Correct 115 ms 4240 KB Output is correct
12 Correct 109 ms 4032 KB Output is correct
13 Correct 96 ms 4196 KB Output is correct
14 Correct 111 ms 4096 KB Output is correct
15 Correct 115 ms 4628 KB Output is correct
16 Correct 125 ms 4488 KB Output is correct
17 Correct 132 ms 4232 KB Output is correct
18 Correct 147 ms 4504 KB Output is correct
19 Correct 124 ms 4424 KB Output is correct
20 Correct 20 ms 4496 KB Output is correct
21 Correct 19 ms 4640 KB Output is correct
22 Correct 22 ms 4384 KB Output is correct
23 Correct 20 ms 4488 KB Output is correct
24 Correct 19 ms 4512 KB Output is correct
25 Correct 23 ms 4504 KB Output is correct
26 Correct 22 ms 4512 KB Output is correct
27 Correct 22 ms 4512 KB Output is correct
28 Correct 19 ms 4280 KB Output is correct
29 Correct 19 ms 4368 KB Output is correct
30 Correct 19 ms 4472 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 5712 KB Output is correct
2 Correct 38 ms 5744 KB Output is correct
3 Correct 40 ms 5760 KB Output is correct
4 Correct 148 ms 4400 KB Output is correct
5 Correct 22 ms 5352 KB Output is correct
6 Correct 26 ms 4488 KB Output is correct
7 Correct 26 ms 4248 KB Output is correct
8 Correct 19 ms 4632 KB Output is correct
9 Correct 19 ms 4428 KB Output is correct
10 Correct 113 ms 4124 KB Output is correct
11 Correct 110 ms 4176 KB Output is correct
12 Correct 99 ms 4096 KB Output is correct
13 Correct 103 ms 4196 KB Output is correct
14 Correct 109 ms 4356 KB Output is correct
15 Correct 117 ms 4496 KB Output is correct
16 Correct 125 ms 4672 KB Output is correct
17 Correct 124 ms 4440 KB Output is correct
18 Correct 150 ms 4240 KB Output is correct
19 Correct 129 ms 4500 KB Output is correct
20 Correct 17 ms 4744 KB Output is correct
21 Correct 20 ms 4656 KB Output is correct
22 Correct 19 ms 4440 KB Output is correct
23 Correct 20 ms 4408 KB Output is correct
24 Correct 19 ms 4408 KB Output is correct
25 Correct 19 ms 4400 KB Output is correct
26 Correct 22 ms 4400 KB Output is correct
27 Correct 20 ms 4664 KB Output is correct
28 Correct 20 ms 4536 KB Output is correct
29 Correct 19 ms 4612 KB Output is correct
30 Correct 24 ms 4652 KB Output is correct
31 Correct 7 ms 1932 KB Output is correct
32 Correct 7 ms 1932 KB Output is correct
33 Correct 9 ms 2064 KB Output is correct
34 Correct 7 ms 2060 KB Output is correct
35 Correct 5 ms 1932 KB Output is correct
36 Correct 7 ms 1968 KB Output is correct
37 Correct 8 ms 1964 KB Output is correct
38 Correct 4 ms 1796 KB Output is correct
39 Correct 5 ms 1924 KB Output is correct
40 Correct 6 ms 1940 KB Output is correct
41 Correct 7 ms 2060 KB Output is correct
42 Correct 6 ms 1924 KB Output is correct