Submission #1074306

# Submission time Handle Problem Language Result Execution time Memory
1074306 2024-08-25T09:38:09 Z joelgun14 Growing Vegetables is Fun 5 (JOI24_vegetables5) C++17
30 / 100
5000 ms 87216 KB
// header file
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
// pragma
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
// macros
// #define endl "\n"
#define ll long long
#define mp make_pair
#define ins insert
#define lb lower_bound
#define pb push_back
#define ub upper_bound
#define lll __int128
#define fi first
#define se second
using namespace std;
using namespace __gnu_pbds;
typedef tree<int, null_type, less_equal<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_multiset;
typedef tree<int, null_type, less<int>, rb_tree_tag,tree_order_statistics_node_update> ordered_set;
const int lim = 6e5 + 5;
struct fenwick {
  int a[lim];
  fenwick() {
    memset(a, 0, sizeof(a));
  }
  void update(int idx, int val) {
    // cerr << idx << endl;
    assert(idx > 0);
    while(idx < lim) {
      a[idx] += val;
      idx += idx&-idx;
    }
  }
  void update(int l, int r, int val) {
    if(l > r)
      return;
    update(l, val);
    update(r + 1, -val);
  }
  int query(int idx) {
    if(idx >= lim)
      idx = lim - 1;
    int res = 0;
    while(idx) {
      res += a[idx];
      idx -= idx&-idx;
    }
    return res;
  }
};
int main() {
  ios_base::sync_with_stdio(0); cin.tie(NULL);
  int n;
  cin >> n;
  int a[2 * n + 5];
  for(int i = 1; i <= 2 * n; ++i)
    cin >> a[i];
  int b[n + 5], c[n + 5];
  for(int i = 1; i <= n; ++i)
    cin >> b[i];
  for(int i = 1; i <= n; ++i)
    cin >> c[i];
  sort(b + 1, b + n + 1);
  sort(c + 1, c + n + 1);
  int l = 0, r = 1e9, res = -1;
  vector<pair<int, int>> v;
  for(int i = 1; i <= 2 * n; ++i)
    v.pb(mp(a[i], i));
  sort(v.begin(), v.end());
  while(l <= r) {
    int mid = (l + r) >> 1;
    // max diff -> mid
    // try each partition what is the max diff
    // nanti ada banyak validity test, tinggal cek validity testnya mana aja
    pair<int, int> validb[2 * n + 5], validr[2 * n + 5];
    for(int i = 1; i <= 2 * n; ++i) {
      // idx of element >= a[i] - mid
      validb[i].fi = lower_bound(b + 1, b + n + 1, a[i] - mid) - b;
      // idx of element <= a[i] + mid
      validb[i].se = upper_bound(b + 1, b + n + 1, a[i] + mid) - b - 1;
      // idx of element >= a[i] - mid
      validr[i].fi = lower_bound(c + 1, c + n + 1, a[i] - mid) - c;
      // idx of element <= a[i] + mid
      validr[i].se = upper_bound(c + 1, c + n + 1, a[i] + mid) - c - 1;
      // if(mid == 1) {
      //   cerr << a[i] + mid << " " << upper_bound(c + 1, c + n + 1, a[i] + mid) - c - 1 << " " << validr[i].se << endl;
      // }
    }
    fenwick cur;
    set<int> blue, red;
    for(int i = 1; i <= 2 * n; ++i)
      blue.ins(i), red.ins(i);
    for(auto p : v) {
      // process
      // cerr << "UPDATE" << endl;
      cur.update(max(1, p.se - n + 1), p.se, 1);
      // observe that blue on left/right of that segment can be invalid
      auto it = blue.begin();
      int idx = p.se;
      // cerr << "TEST" << endl;
      while(blue.size() && (it = blue.lb(p.se - n + 1)) != blue.end() && *it <= p.se) {
        int tmp2 = cur.query(*it);
        if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
          blue.erase(it);
        else
          break;
      }
      while(blue.size() && (it = blue.ub(p.se)) != blue.begin() && *--it >= p.se - n + 1) {
        int tmp2 = cur.query(*it);
        if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
          blue.erase(it);
        else
          break;
      }
      if(p.se <= n) {
        cur.update(p.se + n + 1, 2 * n, 1);
        // observe that blue on left/right of that segment can be invalid
        while(blue.size() && (it = blue.lb(p.se + n + 1)) != blue.end() && *it <= p.se + 2 * n) {
          int tmp2 = cur.query(*it);
          if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
            blue.erase(it);
          else
            break;
        }
        while(blue.size() && (it = blue.ub(p.se + 2 * n)) != blue.begin() && *--it >= p.se + n + 1) {
          int tmp2 = cur.query(*it);
          if(tmp2 < validb[idx].fi || tmp2 > validb[idx].se)
            blue.erase(it);
          else
            break;
        } 
      }
      // cerr << "TEST" << endl;
      while(red.size() && (it = red.lb(p.se - n + 1)) != red.end() && *it <= p.se) {
        // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].fi << endl; 
        int tmp2 = cur.query(*it);
        if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se) {
          // cerr << "delete1 " << *it << " due to " << p.se << endl;
          red.erase(it);
        }
        else
          break;
      }
      while(red.size() && (it = red.ub(p.se)) != red.begin() && *--it >= p.se - n + 1) {
        // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].se << endl; 
        int tmp2 = cur.query(*it);
        if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se) {
          // cerr << "delete2 " << *it << " due to " << p.se << endl;
          red.erase(it);
        }
        else
          break;
      }
      if(p.se <= n) {
        // observe that red on left/right of that segment can be invalid
        while(red.size() && (it = red.lb(p.se + n + 1)) != red.end() && *it <= p.se + 2 * n) {
          // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].fi << endl; 
          int tmp2 = cur.query(*it);
          if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se) {
            // cerr << "delete " << *it << " due to " << p.se << endl;
            red.erase(it);
          }
          else
            break;
        }
        while(red.size() && (it = red.ub(p.se + 2 * n)) != red.begin() && *--it >= p.se + n + 1) {
          // cerr << "check " << *it << " due to " << p.se << " " << cur.query(*it) << " " << validr[idx].se << endl; 
          int tmp2 = cur.query(*it);
          if(tmp2 < validr[idx].fi || tmp2 > validr[idx].se) {
            // cerr << "delete " << *it << " due to " << p.se << endl;
            red.erase(it);
          }
          else
            break;
        } 
      }
    }
    // blue and red have to complement each other
    bool ans = 0;
    for(auto x : blue) {
      if(red.count(x - n) || red.count(x + n))
        ans = 1;
    }
    /*
    if(mid <= 20) {
      cerr << "DEBUG " << mid << endl;
      for(auto x : red) {
        cerr << x << " ";
      }
      cerr << endl;
      for(auto x : blue) {
        cerr << x << " ";
      }
      cerr << endl;
    }
    */
    if(ans) 
      r = mid - 1, res = mid;
    else
      l = mid + 1;
  }
  cout << res << endl;
  // choose a contiguous segment L to R such that we use one color
  // N^2 approach -> pair greedily (sorted)
  // int res = 1e9;
  // for(int i = 1; i + n <= 2 * n + 1; ++i) {
  //   vector<int> blue, red;
  //   for(int j = 1; j < i; ++j) {
  //     blue.pb(a[j]);
  //   }
  //   for(int j = i; j < i + n; ++j) {
  //     red.pb(a[j]);
  //   }
  //   for(int j = i + n; j <= 2 * n; ++j) {
  //     blue.pb(a[j]);
  //   }
  //   sort(blue.begin(), blue.end());
  //   sort(red.begin(), red.end());
  //   int mx = 0;
  //   for(int k = 1; k <= n; ++k) {
  //     mx = max({mx, abs(blue[k - 1] - b[k]), abs(red[k - 1] - c[k])});
  //   }
  //   res = min(res, mx);
  //   mx = 0;
  //   swap(red, blue);
  //   for(int k = 1; k <= n; ++k) {
  //     mx = max({mx, abs(blue[k - 1] - b[k]), abs(red[k - 1] - c[k])});
  //   }
  //   res = min(res, mx);
  // }
  // cout << res << endl;
  return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 2652 KB Output is correct
2 Correct 3 ms 2804 KB Output is correct
3 Correct 3 ms 2652 KB Output is correct
4 Correct 3 ms 2804 KB Output is correct
5 Correct 3 ms 2804 KB Output is correct
6 Correct 3 ms 2652 KB Output is correct
7 Correct 3 ms 2652 KB Output is correct
8 Correct 3 ms 2652 KB Output is correct
9 Correct 3 ms 2656 KB Output is correct
10 Correct 3 ms 2652 KB Output is correct
11 Correct 3 ms 2652 KB Output is correct
12 Correct 4 ms 2796 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 2652 KB Output is correct
2 Correct 3 ms 2804 KB Output is correct
3 Correct 3 ms 2652 KB Output is correct
4 Correct 3 ms 2804 KB Output is correct
5 Correct 3 ms 2804 KB Output is correct
6 Correct 3 ms 2652 KB Output is correct
7 Correct 3 ms 2652 KB Output is correct
8 Correct 3 ms 2652 KB Output is correct
9 Correct 3 ms 2656 KB Output is correct
10 Correct 3 ms 2652 KB Output is correct
11 Correct 3 ms 2652 KB Output is correct
12 Correct 4 ms 2796 KB Output is correct
13 Correct 3 ms 2652 KB Output is correct
14 Correct 4 ms 2652 KB Output is correct
15 Correct 3 ms 2652 KB Output is correct
16 Correct 4 ms 2648 KB Output is correct
17 Correct 3 ms 2652 KB Output is correct
18 Correct 3 ms 2652 KB Output is correct
19 Correct 3 ms 2652 KB Output is correct
20 Correct 3 ms 2652 KB Output is correct
21 Correct 3 ms 2652 KB Output is correct
22 Correct 3 ms 2652 KB Output is correct
23 Correct 3 ms 2652 KB Output is correct
24 Correct 3 ms 2652 KB Output is correct
25 Correct 3 ms 2652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 2652 KB Output is correct
2 Correct 3 ms 2804 KB Output is correct
3 Correct 3 ms 2652 KB Output is correct
4 Correct 3 ms 2804 KB Output is correct
5 Correct 3 ms 2804 KB Output is correct
6 Correct 3 ms 2652 KB Output is correct
7 Correct 3 ms 2652 KB Output is correct
8 Correct 3 ms 2652 KB Output is correct
9 Correct 3 ms 2656 KB Output is correct
10 Correct 3 ms 2652 KB Output is correct
11 Correct 3 ms 2652 KB Output is correct
12 Correct 4 ms 2796 KB Output is correct
13 Correct 3 ms 2652 KB Output is correct
14 Correct 4 ms 2652 KB Output is correct
15 Correct 3 ms 2652 KB Output is correct
16 Correct 4 ms 2648 KB Output is correct
17 Correct 3 ms 2652 KB Output is correct
18 Correct 3 ms 2652 KB Output is correct
19 Correct 3 ms 2652 KB Output is correct
20 Correct 3 ms 2652 KB Output is correct
21 Correct 3 ms 2652 KB Output is correct
22 Correct 3 ms 2652 KB Output is correct
23 Correct 3 ms 2652 KB Output is correct
24 Correct 3 ms 2652 KB Output is correct
25 Correct 3 ms 2652 KB Output is correct
26 Correct 70 ms 3164 KB Output is correct
27 Correct 73 ms 3412 KB Output is correct
28 Correct 71 ms 3296 KB Output is correct
29 Correct 5 ms 2648 KB Output is correct
30 Correct 57 ms 3164 KB Output is correct
31 Correct 65 ms 3160 KB Output is correct
32 Correct 42 ms 2904 KB Output is correct
33 Correct 17 ms 2908 KB Output is correct
34 Correct 51 ms 3364 KB Output is correct
35 Correct 69 ms 3160 KB Output is correct
36 Correct 58 ms 3164 KB Output is correct
37 Correct 56 ms 3164 KB Output is correct
38 Correct 50 ms 3160 KB Output is correct
39 Correct 67 ms 3164 KB Output is correct
40 Correct 67 ms 3164 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5036 ms 87216 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 2652 KB Output is correct
2 Correct 3 ms 2804 KB Output is correct
3 Correct 3 ms 2652 KB Output is correct
4 Correct 3 ms 2804 KB Output is correct
5 Correct 3 ms 2804 KB Output is correct
6 Correct 3 ms 2652 KB Output is correct
7 Correct 3 ms 2652 KB Output is correct
8 Correct 3 ms 2652 KB Output is correct
9 Correct 3 ms 2656 KB Output is correct
10 Correct 3 ms 2652 KB Output is correct
11 Correct 3 ms 2652 KB Output is correct
12 Correct 4 ms 2796 KB Output is correct
13 Correct 3 ms 2652 KB Output is correct
14 Correct 4 ms 2652 KB Output is correct
15 Correct 3 ms 2652 KB Output is correct
16 Correct 4 ms 2648 KB Output is correct
17 Correct 3 ms 2652 KB Output is correct
18 Correct 3 ms 2652 KB Output is correct
19 Correct 3 ms 2652 KB Output is correct
20 Correct 3 ms 2652 KB Output is correct
21 Correct 3 ms 2652 KB Output is correct
22 Correct 3 ms 2652 KB Output is correct
23 Correct 3 ms 2652 KB Output is correct
24 Correct 3 ms 2652 KB Output is correct
25 Correct 3 ms 2652 KB Output is correct
26 Correct 70 ms 3164 KB Output is correct
27 Correct 73 ms 3412 KB Output is correct
28 Correct 71 ms 3296 KB Output is correct
29 Correct 5 ms 2648 KB Output is correct
30 Correct 57 ms 3164 KB Output is correct
31 Correct 65 ms 3160 KB Output is correct
32 Correct 42 ms 2904 KB Output is correct
33 Correct 17 ms 2908 KB Output is correct
34 Correct 51 ms 3364 KB Output is correct
35 Correct 69 ms 3160 KB Output is correct
36 Correct 58 ms 3164 KB Output is correct
37 Correct 56 ms 3164 KB Output is correct
38 Correct 50 ms 3160 KB Output is correct
39 Correct 67 ms 3164 KB Output is correct
40 Correct 67 ms 3164 KB Output is correct
41 Execution timed out 5036 ms 87216 KB Time limit exceeded
42 Halted 0 ms 0 KB -