Submission #107411

# Submission time Handle Problem Language Result Execution time Memory
107411 2019-04-24T06:31:24 Z shoemakerjo Designated Cities (JOI19_designated_cities) C++14
100 / 100
952 ms 62480 KB
#include <bits/stdc++.h>

using namespace std;

using ll = long long;
const int maxn = 200010;
#define pii pair<int, int>
#define pll pair<ll, ll>
#define pil pair<int, pll>
#define pli pair<ll, int>
#define mp make_pair

int n, q;

//we want the seg-tree to go in euler tour order
int qus[maxn];
vector<pil> adj[maxn];

ll ans[maxn]; //store ans for each value
ll dep[maxn]; //distance from root to me
int par[maxn];
ll plink[maxn];
ll pplink[maxn];

int rt; //some global root variable
ll esum = 0LL; //total edge sum
//barebones dfs
void dfs(int u, int p = -1) {
  if (p == -1) {
    dep[u] = 0LL;
    par[u] = -1;
    plink[u] = 0LL;
  }
  for (pil vp : adj[u]) {
    if (vp.first == p) continue;
    dep[vp.first] = dep[u] + vp.second.first; //dep is length to bot
    par[vp.first] = u;
    plink[vp.first] = vp.second.second;
    pplink[vp.first] = vp.second.first;
    dfs(vp.first, u);
  }
}

void dfs1(int u, ll msum = 0LL) {
  ans[1] = min(ans[1], esum - msum);
  for (pil vp : adj[u]) {
    if (vp.first != par[u]) {
      dfs1(vp.first, msum - vp.second.second +
        vp.second.first);
    }
  }
}

void go1() {
  //finds the answer for 1 by itself
  //when I go to a child, I reverse that edge
  //start with all going down
  ans[1] = esum;
  ll csum = 0LL;
  for (int i = 1; i <= n; i++) {
    if (i != rt) csum += plink[i];
  }
  dfs1(rt, csum);
}

pli mdepth[maxn]; //want maxdepth

pii cg;

void dfs2(int u, ll msum) {
  //msum is the sum of everything in
  //consider me to be an lca
  mdepth[u] = {dep[u], u};
  vector<pli> ops;

  for (pil vp : adj[u]) {
    if (vp.first == par[u]) continue;
    dfs2(vp.first, msum - vp.second.second);
    ops.push_back(mdepth[vp.first]);
  }

  sort(ops.begin(), ops.end());
  reverse(ops.begin(), ops.end());
  if (ops.size()) mdepth[u] = ops[0];
  if (ops.size() < 2) return;
  msum += ops[0].first + ops[1].first - dep[u];
  if (esum - msum < ans[2]) {
    ans[2] = esum - msum;
    cg = mp(ops[0].second, ops[1].second);
  }
}

pii go2() {
  //we  consider everything as the lca
  //then we sacrifice a certain amount that "goes down"
  //start with all of the par-links in (par points up)
  ans[2] = esum;
  //   we lose some of the par-links
  ll csum = 0LL;
  for (int i = 1; i <= n; i++) {
    if (i != rt) csum += plink[i];
  }
  dfs2(rt, csum);
  return cg;
}

int st[maxn];
int en[maxn];
vector<int> stuff;

void etour(int u) {
  st[u] = stuff.size();
  stuff.push_back(u);
  for (pil vp : adj[u]) {
    if (vp.first != par[u]) {
      etour(vp.first);
    }
  }
  en[u] = stuff.size()-1;
}

pli seg[maxn*4]; //a max seg tree
ll lazy[maxn*4];

void delaze(int ss, int se, int si) {
  seg[si] = mp(seg[si].first + lazy[si], seg[si].second);
  if (lazy[si] && ss != se) {
    lazy[si*2+1] += lazy[si];
    lazy[si*2+2] += lazy[si];
  }
  lazy[si] = 0;
}

pli query() {
  //get the maximum
  delaze(0, n-1, 0);
  return seg[0];
}

void upd(int us, int ue, ll diff, int ss = 0, int se = n-1,
    int si = 0) {
  delaze(ss, se, si);
  if (us > ue || ss > se || us > se || ue < ss) return;
  if (us <= ss && se <= ue) {
    lazy[si] += diff;
    delaze(ss, se, si);
    return;
  }
  int mid = (ss+se)/2;
  upd(us, ue, diff, ss, mid, si*2+1);
  upd(us, ue, diff, mid+1, se, si*2+2);
  seg[si] = max(seg[si*2+1], seg[si*2+2]);
}

bool isrem[maxn];

void buildtree(int ss = 0, int se  = n-1, int si = 0) {
  if (ss == se) {
    seg[si] = {dep[stuff[ss]], stuff[ss]};
    return;
  }
  int mid = (ss+se)/2;
  buildtree(ss, mid, si*2+1);
  buildtree(mid+1, se, si*2+2);
  seg[si] = max(seg[si*2+1], seg[si*2+2]);
}

void proc(int u) {
  //remove this node
  //go up the parents list
  //all children of me lose going up (keep doing this)
  while (!isrem[u]) {
    // cout << " ----- " << u << endl;
    isrem[u] = true;
    upd(st[u], en[u], 0-pplink[u]);
    u = par[u];
  }
}

int main() {
  ios_base::sync_with_stdio(false);
  cin.tie(NULL);
  cin >> n;
  int a, b;
  ll c, d;
  for (int i = 0; i < n-1; i++) {
    cin >> a >> b >> c >> d;
    adj[a].emplace_back(b, mp(c, d));
    adj[b].emplace_back(a, mp(d, c));
    esum += c;
    esum += d;
  }
  cin >> q;
  for (int i = 1; i <= q; i++) {
    cin >> qus[i];
  }
  if (n == 2) {
    //just bash
    for (int i = 1; i <= q; i++) {
      if (qus[i] == 2) {
        cout << 0 << endl;
      }
      else {
        cout << min(adj[1][0].second.first,
          adj[1][0].second.second) << endl;
      }
    }
    return 0;
  }
  //now we want to root at a non-leaf
  rt = 1;
  for (int i = 2; i <= n; i++) {
    if (adj[i].size() != 1) rt = i;
  }
  dfs(rt);

  go1();
  pii vp = go2();

  // cout << "got 2 : " << vp.first << " " << vp.second << endl;
  //we get the two guys
  rt = par[vp.first];
  dfs(rt); //reset everything (yea)
  etour(rt);
  // cout << "done the dfs" << endl;

  ll cans = ans[2]; //starting answer (will increase)
  //now we do the greedy thing
  buildtree(); //just start all as it is

  // cout << "built the tree" << endl;

  isrem[rt] = true; //basically is removed
  proc(vp.first);
  proc(vp.second);

  for (int i = 3; i <= n; i++) {
    pli tmp = query();
    if (tmp.first != 0) {
      cans -= tmp.first;
      proc(tmp.second);
      // cout << "removing " << tmp.second << " "
      //   << tmp.first << endl;
    }
    else {
      assert(cans == 0LL);
    }
    ans[i] = cans;
  }

  //now we are just printing out answer (for now - 1/2)
  for (int i = 1; i <= q; i++) {
    cout << ans[qus[i]] << '\n';
  }
  cout.flush();
}

//calculate the answer for one
//use a dp to calculate the answer for two (root at non-leaf)
//greedily add nodes until we get to each val (if none left - do nothing)
# Verdict Execution time Memory Grader output
1 Correct 7 ms 5092 KB Output is correct
2 Correct 7 ms 5120 KB Output is correct
3 Correct 8 ms 5120 KB Output is correct
4 Correct 7 ms 5120 KB Output is correct
5 Correct 6 ms 5120 KB Output is correct
6 Correct 8 ms 5120 KB Output is correct
7 Correct 6 ms 5120 KB Output is correct
8 Correct 7 ms 5120 KB Output is correct
9 Correct 6 ms 5120 KB Output is correct
10 Correct 7 ms 5120 KB Output is correct
11 Correct 6 ms 5120 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 5092 KB Output is correct
2 Correct 807 ms 43384 KB Output is correct
3 Correct 844 ms 52940 KB Output is correct
4 Correct 709 ms 43436 KB Output is correct
5 Correct 773 ms 44152 KB Output is correct
6 Correct 792 ms 45260 KB Output is correct
7 Correct 690 ms 43408 KB Output is correct
8 Correct 885 ms 54200 KB Output is correct
9 Correct 564 ms 44512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 4992 KB Output is correct
2 Correct 831 ms 43328 KB Output is correct
3 Correct 933 ms 52972 KB Output is correct
4 Correct 674 ms 43500 KB Output is correct
5 Correct 741 ms 44076 KB Output is correct
6 Correct 786 ms 45144 KB Output is correct
7 Correct 571 ms 44616 KB Output is correct
8 Correct 863 ms 52732 KB Output is correct
9 Correct 586 ms 44500 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 5092 KB Output is correct
2 Correct 7 ms 5120 KB Output is correct
3 Correct 8 ms 5120 KB Output is correct
4 Correct 7 ms 5120 KB Output is correct
5 Correct 6 ms 5120 KB Output is correct
6 Correct 8 ms 5120 KB Output is correct
7 Correct 6 ms 5120 KB Output is correct
8 Correct 7 ms 5120 KB Output is correct
9 Correct 6 ms 5120 KB Output is correct
10 Correct 7 ms 5120 KB Output is correct
11 Correct 6 ms 5120 KB Output is correct
12 Correct 7 ms 5120 KB Output is correct
13 Correct 10 ms 5504 KB Output is correct
14 Correct 11 ms 5632 KB Output is correct
15 Correct 11 ms 5504 KB Output is correct
16 Correct 9 ms 5552 KB Output is correct
17 Correct 11 ms 5504 KB Output is correct
18 Correct 11 ms 5540 KB Output is correct
19 Correct 11 ms 5632 KB Output is correct
20 Correct 12 ms 5476 KB Output is correct
21 Correct 10 ms 5504 KB Output is correct
22 Correct 12 ms 5504 KB Output is correct
23 Correct 10 ms 5504 KB Output is correct
24 Correct 9 ms 5632 KB Output is correct
25 Correct 10 ms 5632 KB Output is correct
26 Correct 11 ms 5504 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 5092 KB Output is correct
2 Correct 807 ms 43384 KB Output is correct
3 Correct 844 ms 52940 KB Output is correct
4 Correct 709 ms 43436 KB Output is correct
5 Correct 773 ms 44152 KB Output is correct
6 Correct 792 ms 45260 KB Output is correct
7 Correct 690 ms 43408 KB Output is correct
8 Correct 885 ms 54200 KB Output is correct
9 Correct 564 ms 44512 KB Output is correct
10 Correct 6 ms 4992 KB Output is correct
11 Correct 831 ms 43328 KB Output is correct
12 Correct 933 ms 52972 KB Output is correct
13 Correct 674 ms 43500 KB Output is correct
14 Correct 741 ms 44076 KB Output is correct
15 Correct 786 ms 45144 KB Output is correct
16 Correct 571 ms 44616 KB Output is correct
17 Correct 863 ms 52732 KB Output is correct
18 Correct 586 ms 44500 KB Output is correct
19 Correct 6 ms 5092 KB Output is correct
20 Correct 754 ms 43460 KB Output is correct
21 Correct 774 ms 52764 KB Output is correct
22 Correct 807 ms 43372 KB Output is correct
23 Correct 782 ms 43652 KB Output is correct
24 Correct 796 ms 43560 KB Output is correct
25 Correct 756 ms 43632 KB Output is correct
26 Correct 739 ms 43624 KB Output is correct
27 Correct 680 ms 43308 KB Output is correct
28 Correct 803 ms 45264 KB Output is correct
29 Correct 764 ms 43936 KB Output is correct
30 Correct 725 ms 43808 KB Output is correct
31 Correct 726 ms 42948 KB Output is correct
32 Correct 894 ms 51968 KB Output is correct
33 Correct 529 ms 44664 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 5092 KB Output is correct
2 Correct 7 ms 5120 KB Output is correct
3 Correct 8 ms 5120 KB Output is correct
4 Correct 7 ms 5120 KB Output is correct
5 Correct 6 ms 5120 KB Output is correct
6 Correct 8 ms 5120 KB Output is correct
7 Correct 6 ms 5120 KB Output is correct
8 Correct 7 ms 5120 KB Output is correct
9 Correct 6 ms 5120 KB Output is correct
10 Correct 7 ms 5120 KB Output is correct
11 Correct 6 ms 5120 KB Output is correct
12 Correct 6 ms 5092 KB Output is correct
13 Correct 807 ms 43384 KB Output is correct
14 Correct 844 ms 52940 KB Output is correct
15 Correct 709 ms 43436 KB Output is correct
16 Correct 773 ms 44152 KB Output is correct
17 Correct 792 ms 45260 KB Output is correct
18 Correct 690 ms 43408 KB Output is correct
19 Correct 885 ms 54200 KB Output is correct
20 Correct 564 ms 44512 KB Output is correct
21 Correct 6 ms 4992 KB Output is correct
22 Correct 831 ms 43328 KB Output is correct
23 Correct 933 ms 52972 KB Output is correct
24 Correct 674 ms 43500 KB Output is correct
25 Correct 741 ms 44076 KB Output is correct
26 Correct 786 ms 45144 KB Output is correct
27 Correct 571 ms 44616 KB Output is correct
28 Correct 863 ms 52732 KB Output is correct
29 Correct 586 ms 44500 KB Output is correct
30 Correct 7 ms 5120 KB Output is correct
31 Correct 10 ms 5504 KB Output is correct
32 Correct 11 ms 5632 KB Output is correct
33 Correct 11 ms 5504 KB Output is correct
34 Correct 9 ms 5552 KB Output is correct
35 Correct 11 ms 5504 KB Output is correct
36 Correct 11 ms 5540 KB Output is correct
37 Correct 11 ms 5632 KB Output is correct
38 Correct 12 ms 5476 KB Output is correct
39 Correct 10 ms 5504 KB Output is correct
40 Correct 12 ms 5504 KB Output is correct
41 Correct 10 ms 5504 KB Output is correct
42 Correct 9 ms 5632 KB Output is correct
43 Correct 10 ms 5632 KB Output is correct
44 Correct 11 ms 5504 KB Output is correct
45 Correct 6 ms 5092 KB Output is correct
46 Correct 754 ms 43460 KB Output is correct
47 Correct 774 ms 52764 KB Output is correct
48 Correct 807 ms 43372 KB Output is correct
49 Correct 782 ms 43652 KB Output is correct
50 Correct 796 ms 43560 KB Output is correct
51 Correct 756 ms 43632 KB Output is correct
52 Correct 739 ms 43624 KB Output is correct
53 Correct 680 ms 43308 KB Output is correct
54 Correct 803 ms 45264 KB Output is correct
55 Correct 764 ms 43936 KB Output is correct
56 Correct 725 ms 43808 KB Output is correct
57 Correct 726 ms 42948 KB Output is correct
58 Correct 894 ms 51968 KB Output is correct
59 Correct 529 ms 44664 KB Output is correct
60 Correct 7 ms 5120 KB Output is correct
61 Correct 864 ms 53240 KB Output is correct
62 Correct 820 ms 61800 KB Output is correct
63 Correct 844 ms 51820 KB Output is correct
64 Correct 778 ms 53488 KB Output is correct
65 Correct 867 ms 52048 KB Output is correct
66 Correct 913 ms 53484 KB Output is correct
67 Correct 790 ms 52180 KB Output is correct
68 Correct 872 ms 53132 KB Output is correct
69 Correct 938 ms 54756 KB Output is correct
70 Correct 838 ms 53832 KB Output is correct
71 Correct 817 ms 52816 KB Output is correct
72 Correct 782 ms 53816 KB Output is correct
73 Correct 952 ms 62480 KB Output is correct
74 Correct 696 ms 55984 KB Output is correct