Submission #107411

#TimeUsernameProblemLanguageResultExecution timeMemory
107411shoemakerjoDesignated Cities (JOI19_designated_cities)C++14
100 / 100
952 ms62480 KiB
#include <bits/stdc++.h> using namespace std; using ll = long long; const int maxn = 200010; #define pii pair<int, int> #define pll pair<ll, ll> #define pil pair<int, pll> #define pli pair<ll, int> #define mp make_pair int n, q; //we want the seg-tree to go in euler tour order int qus[maxn]; vector<pil> adj[maxn]; ll ans[maxn]; //store ans for each value ll dep[maxn]; //distance from root to me int par[maxn]; ll plink[maxn]; ll pplink[maxn]; int rt; //some global root variable ll esum = 0LL; //total edge sum //barebones dfs void dfs(int u, int p = -1) { if (p == -1) { dep[u] = 0LL; par[u] = -1; plink[u] = 0LL; } for (pil vp : adj[u]) { if (vp.first == p) continue; dep[vp.first] = dep[u] + vp.second.first; //dep is length to bot par[vp.first] = u; plink[vp.first] = vp.second.second; pplink[vp.first] = vp.second.first; dfs(vp.first, u); } } void dfs1(int u, ll msum = 0LL) { ans[1] = min(ans[1], esum - msum); for (pil vp : adj[u]) { if (vp.first != par[u]) { dfs1(vp.first, msum - vp.second.second + vp.second.first); } } } void go1() { //finds the answer for 1 by itself //when I go to a child, I reverse that edge //start with all going down ans[1] = esum; ll csum = 0LL; for (int i = 1; i <= n; i++) { if (i != rt) csum += plink[i]; } dfs1(rt, csum); } pli mdepth[maxn]; //want maxdepth pii cg; void dfs2(int u, ll msum) { //msum is the sum of everything in //consider me to be an lca mdepth[u] = {dep[u], u}; vector<pli> ops; for (pil vp : adj[u]) { if (vp.first == par[u]) continue; dfs2(vp.first, msum - vp.second.second); ops.push_back(mdepth[vp.first]); } sort(ops.begin(), ops.end()); reverse(ops.begin(), ops.end()); if (ops.size()) mdepth[u] = ops[0]; if (ops.size() < 2) return; msum += ops[0].first + ops[1].first - dep[u]; if (esum - msum < ans[2]) { ans[2] = esum - msum; cg = mp(ops[0].second, ops[1].second); } } pii go2() { //we consider everything as the lca //then we sacrifice a certain amount that "goes down" //start with all of the par-links in (par points up) ans[2] = esum; // we lose some of the par-links ll csum = 0LL; for (int i = 1; i <= n; i++) { if (i != rt) csum += plink[i]; } dfs2(rt, csum); return cg; } int st[maxn]; int en[maxn]; vector<int> stuff; void etour(int u) { st[u] = stuff.size(); stuff.push_back(u); for (pil vp : adj[u]) { if (vp.first != par[u]) { etour(vp.first); } } en[u] = stuff.size()-1; } pli seg[maxn*4]; //a max seg tree ll lazy[maxn*4]; void delaze(int ss, int se, int si) { seg[si] = mp(seg[si].first + lazy[si], seg[si].second); if (lazy[si] && ss != se) { lazy[si*2+1] += lazy[si]; lazy[si*2+2] += lazy[si]; } lazy[si] = 0; } pli query() { //get the maximum delaze(0, n-1, 0); return seg[0]; } void upd(int us, int ue, ll diff, int ss = 0, int se = n-1, int si = 0) { delaze(ss, se, si); if (us > ue || ss > se || us > se || ue < ss) return; if (us <= ss && se <= ue) { lazy[si] += diff; delaze(ss, se, si); return; } int mid = (ss+se)/2; upd(us, ue, diff, ss, mid, si*2+1); upd(us, ue, diff, mid+1, se, si*2+2); seg[si] = max(seg[si*2+1], seg[si*2+2]); } bool isrem[maxn]; void buildtree(int ss = 0, int se = n-1, int si = 0) { if (ss == se) { seg[si] = {dep[stuff[ss]], stuff[ss]}; return; } int mid = (ss+se)/2; buildtree(ss, mid, si*2+1); buildtree(mid+1, se, si*2+2); seg[si] = max(seg[si*2+1], seg[si*2+2]); } void proc(int u) { //remove this node //go up the parents list //all children of me lose going up (keep doing this) while (!isrem[u]) { // cout << " ----- " << u << endl; isrem[u] = true; upd(st[u], en[u], 0-pplink[u]); u = par[u]; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n; int a, b; ll c, d; for (int i = 0; i < n-1; i++) { cin >> a >> b >> c >> d; adj[a].emplace_back(b, mp(c, d)); adj[b].emplace_back(a, mp(d, c)); esum += c; esum += d; } cin >> q; for (int i = 1; i <= q; i++) { cin >> qus[i]; } if (n == 2) { //just bash for (int i = 1; i <= q; i++) { if (qus[i] == 2) { cout << 0 << endl; } else { cout << min(adj[1][0].second.first, adj[1][0].second.second) << endl; } } return 0; } //now we want to root at a non-leaf rt = 1; for (int i = 2; i <= n; i++) { if (adj[i].size() != 1) rt = i; } dfs(rt); go1(); pii vp = go2(); // cout << "got 2 : " << vp.first << " " << vp.second << endl; //we get the two guys rt = par[vp.first]; dfs(rt); //reset everything (yea) etour(rt); // cout << "done the dfs" << endl; ll cans = ans[2]; //starting answer (will increase) //now we do the greedy thing buildtree(); //just start all as it is // cout << "built the tree" << endl; isrem[rt] = true; //basically is removed proc(vp.first); proc(vp.second); for (int i = 3; i <= n; i++) { pli tmp = query(); if (tmp.first != 0) { cans -= tmp.first; proc(tmp.second); // cout << "removing " << tmp.second << " " // << tmp.first << endl; } else { assert(cans == 0LL); } ans[i] = cans; } //now we are just printing out answer (for now - 1/2) for (int i = 1; i <= q; i++) { cout << ans[qus[i]] << '\n'; } cout.flush(); } //calculate the answer for one //use a dp to calculate the answer for two (root at non-leaf) //greedily add nodes until we get to each val (if none left - do nothing)
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...