Submission #1072970

#TimeUsernameProblemLanguageResultExecution timeMemory
1072970ProtonDecay314Holiday (IOI14_holiday)C++17
23 / 100
1102 ms21172 KiB
#include"holiday.h" #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef vector<ll> vll; typedef vector<vll> vvll; typedef vector<int> vi; typedef vector<vi> vvi; typedef pair<int, int> pi; typedef pair<ll, ll> pll; typedef vector<pi> vpi; typedef vector<pll> vpll; typedef vector<vpi> vvpi; typedef vector<vpll> vvpll; typedef vector<bool> vb; typedef vector<vb> vvb; typedef short int si; typedef vector<si> vsi; typedef vector<vsi> vvsi; #define IOS ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); #define L(varll, mn, mx) for(ll varll = (mn); varll < (mx); varll++) #define LR(varll, mx, mn) for(ll varll = (mx); varll > (mn); varll--) #define LI(vari, mn, mx) for(int vari = (mn); vari < (mx); vari++) #define LIR(vari, mx, mn) for(int vari = (mx); vari > (mn); vari--) #define INPV(varvec) for(auto& varveci : (varvec)) cin >> varveci #define fi first #define se second #define pb push_back #define INF(type) numeric_limits<type>::max() #define NINF(type) numeric_limits<type>::min() #define TCASES int t; cin >> t; while(t--) /* This segment tree stores the cities in order of decreasing number of attractions With this setup, we can compute the sum of the x largest elements quickly Segtree index = kth order statistic (in decreasing array) */ class Tree { public: ll l, r; // SEGTREE index, NOT Node index Tree *lt, *rt; ll v, act; Tree(ll a_l, ll a_r): l(a_l), r(a_r), lt(nullptr), rt(nullptr), v(0ll), act(0ll) {}; void combine() { act = lt->act + rt->act; v = lt->v * min(1ll, lt->act) + rt->v * min(1ll, rt->act); } void build(const vpll& a_ind) { if(l == r) { v = a_ind[l].fi; act = 0ll; return; } ll m = (l + r) >> 1ll; lt = new Tree(l, m); rt = new Tree(m + 1ll, r); lt->build(a_ind); rt->build(a_ind); combine(); } void set_activation(ll i, ll nact) { if(l == r && r == i) { act = nact; return; } (i <= ((l + r) >> 1ll) ? lt : rt)->set_activation(i, nact); combine(); } // We need to walk on the segment tree instead of doing a binary search // Binary search is too slow ll find_kth_active(ll x) { if(act < x) return -1ll; if(l == r) return l; ll m = (l + r) >> 1ll; if(x <= lt->act) { return lt->find_kth_active(x); } else { return rt->find_kth_active(x - lt->act); // lt is guaranteed to be non-null due to the l == r check } } ll sum_range(ll ql, ll qr) { if(ql > r || qr < l) return 0ll; if(ql == l && qr == r) return v; ll m = (l + r) >> 1ll; return lt->sum_range(ql, min(qr, m)) + rt->sum_range(max(ql, m + 1ll), qr); } ll sum_of_largest(ll x) { if(x <= 0ll) return 0ll; ll ind_of_last_active = find_kth_active(x); if(ind_of_last_active == -1ll) { ind_of_last_active = r; // cout << "OOB" << endl; } return sum_range(0ll, ind_of_last_active); } }; void compute_f(ll l, ll r, ll vl, ll vr, ll s, ll n, vll& a_inv, vll& fr, vll& maxvr, Tree& tr) { if(r < l) return; // Compute value at midpoint ll m = (l + r) >> 1ll; ll maxv = 0ll, maxi = vl; // Deactivate values L(i, vl, vr + 1ll) { tr.set_activation(a_inv[i], 0ll); } // Line sweep, activate values one by one L(i, vl, vr + 1ll) { tr.set_activation(a_inv[i], 1ll); // Get the sum of the largest elements // The segment in consideration is [s, i] // movement cost is i - s, so the total // number of visitable cities is m - i + s ll newv = tr.sum_of_largest(m - i + s); // ! TODO rethink // cout << "Anya likes peanuts, Anya hates carrots " << i << ", a_inv = " << a_inv[i] << " " << m << " " << m - i + s << " " << vr - vl << " " << newv << endl; if(newv > maxv) { maxv = newv; maxi = i; } } // Set fr[m] and maxvr[m] to its new value fr[m] = maxi; maxvr[m] = maxv; // Recurse toward the left (compute all left values) compute_f(l, m - 1ll, vl, fr[m], s, n, a_inv, fr, maxvr, tr); // Activate everything to the left (i.e., from vl to fr[m]) (assume left has been deactivated) L(i, vl, fr[m]) { tr.set_activation(a_inv[i], 1ll); } // Recurse toward the right (compute all right values) compute_f(m + 1ll, r, fr[m], vr, s, n, a_inv, fr, maxvr, tr); // Deactivate everything in the range vl to vr in NODE INDEX SPACE (not segtree space) // This is necessary to "reset" the segtree back to its original state for the next iteration L(i, vl, vr + 1ll) { tr.set_activation(a_inv[i], 0ll); } // Per level, the amount of work done is O(n log n), which should pass } ll solve(ll n, ll s, ll d, const vll& a) { // Create a segment tree, sorted by decreasing values // Each node should have schema Node { v: ll, i: ll } // Here, Node.i maps from segtree ind to node ind // ofc, we also need a node ind to segtree ind converter // Which is essentially just the inverse permutation vpll a_ind(n, {0ll, 0ll}); L(i, 0ll, n) { a_ind[i] = {a[i], i}; } sort(a_ind.begin(), a_ind.end(), greater<pll>()); Tree tr(0ll, n - 1ll); tr.build(a_ind); // a_ind :: tree ind -> [v, node ind] // a_ind_inv :: node ind -> tree ind vll a_ind_inv(n, 0ll); /// Invert the permutation L(i, 0ll, n) { a_ind_inv[a_ind[i].se] = i; } // First, the goal is to compute the max indices f(d) for each day d // This could be done using a DnC approach // I guess also store the maximum value for each corresponding d vll fr(d + 1ll, -1ll); vll maxvr(d + 1ll, -1ll); compute_f(0ll, d, s, n - 1ll, s, n, a_ind_inv, fr, maxvr, tr); // In the end, we'll have two sequences fL and fR, then we'll compute // term index d of the max-plus convolution of fL and fR // ! For now, I simply want to test if the segtree is working. Assume s = 0 and return maxvr[d] return maxvr[d]; } ll findMaxAttraction(int n, int start, int d, int attraction[]) { vll a(n, 0ll); L(i, 0ll, n) a[i] = attraction[i]; ll ans = 0ll; ans = max(ans, solve((ll)n, (ll)start, (ll)d, a)); // reverse(a.begin(), a.end()); // start = n - start - 1ll; // ans = max(ans, solve(((ll)n, (ll)start, (ll)d, a))); return ans; }

Compilation message (stderr)

holiday.cpp: In member function 'll Tree::find_kth_active(ll)':
holiday.cpp:90:16: warning: unused variable 'm' [-Wunused-variable]
   90 |             ll m = (l + r) >> 1ll;
      |                ^
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...