Submission #1071909

# Submission time Handle Problem Language Result Execution time Memory
1071909 2024-08-23T12:17:52 Z mickey080929 Cultivation (JOI17_cultivation) C++17
100 / 100
1769 ms 3548 KB
#include <bits/stdc++.h>

#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("Ofast")
 
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<ll,ll> pll;
 
const ll inf = 2e18;
 
ll R, C;
ll N;
 
ll mxl[310][310], mxr[310][310], mxsum[310][310];

ll solve(vector<pll> &p, ll H) {
	vector<pll> upd;
	upd.reserve(N * 2);
	ll j = 0;
	for (ll i=0; i<N; i++) {
		while (j < N && p[j].first + H <= p[i].first) {
			upd.push_back({p[j].first + H, -p[j].second});
			j ++;
		}
		upd.push_back(p[i]);
	}
	while (j < N) {
		upd.push_back({p[j].first + H, -p[j].second});
		j ++;
	}
	vector<array<ll,4>> save;
	ll idx1 = 0, idx2 = -1;
	for (ll i=0; i<N*2; i++) {
		if (upd[i].second > 0) idx2 ++;
		if (i + 1 != N*2 && upd[i].first == upd[i+1].first) continue;
		while (idx1 < N && p[idx1].first + H <= upd[i].first) idx1 ++;
		if (idx1 > idx2) {
			save.push_back({upd[i].first, inf, inf, inf});
			continue;
		}
		save.push_back({upd[i].first, mxsum[idx1][idx2], mxl[idx1][idx2], mxr[idx1][idx2]});
	}
	ll ans = inf;
	deque<ll> dq[3];
	for (ll i=(ll)save.size()-1; i>=0; i--) {
		for (ll j=0; j<3; j++) {
			while (!dq[j].empty() && save[dq[j].back()][j+1] <= save[i][j+1]) {
				dq[j].pop_back();
			}
			while (!dq[j].empty() && save[dq[j].front()][0] > save[i][0] + R - 1) {
				dq[j].pop_front();
			}
			dq[j].push_back(i);
		}
		ans = min(ans, max(save[dq[0].front()][1], save[dq[1].front()][2] + save[dq[2].front()][3]));
	}
	return ans;
}

ll solve2(vector<pll> &p, ll H1, ll H2) {
	vector<pll> upd;
	ll j = 0;
	for (ll i=0; i<N; i++) {
		while (j < N && p[j].first + H2 + 1 <= p[i].first - H1) {
			upd.push_back({p[j].first + H2 + 1, -p[j].second});
			j ++;
		}
		upd.push_back({max(1LL, p[i].first - H1), p[i].second});
	}
	while (j < N) {
		upd.push_back({p[j].first + H2 + 1, -p[j].second});
		j ++;
	}
	if (upd[0].first != 1) return inf;
	ll l = 0, r = 0, sum = 0;
	ll idx1 = 0, idx2 = -1;
    for (ll i=0; i<upd.size(); i++) {
        if (upd[i].first > R) break;
        if (upd[i].second > 0) idx2 ++;
        else idx1 ++;
        if (i + 1 != upd.size() && upd[i].first == upd[i+1].first) continue;
        if (idx1 > idx2) {
            return inf;
        }
        l = max(l, mxl[idx1][idx2]);
        r = max(r, mxr[idx1][idx2]);
        sum = max(sum, mxsum[idx1][idx2]);
    }
    return max(sum, l+r);
}
 
int main() {
    ios_base :: sync_with_stdio(false); cin.tie(NULL);
    cin >> R >> C;
    cin >> N;
    vector<pll> p(N);
    for (ll i=0; i<N; i++) {
    	cin >> p[i].first >> p[i].second;
    }
    sort(p.begin(), p.end());
    for (ll i=0; i<N; i++) {
    	vector<ll> cur;
    	for (ll j=i; j<N; j++) {
    		if (cur.empty() || cur.back() < p[j].second) {
    			cur.push_back(p[j].second);
    		}
    		else {
    			for (ll k=0; k<cur.size(); k++) {
    				if (cur[k] >= p[j].second) {
    					cur.insert(cur.begin() + k, p[j].second);
    					break;
    				}
    			}
    		}
    		ll l = cur[0] - 1, r = C - cur.back();
			ll sum = 0;
			for (ll k=0; k+1<cur.size(); k++) {
				sum = max(sum, cur[k+1] - cur[k] - 1);
			}
			mxl[i][j] = l; mxr[i][j] = r;
			mxsum[i][j] = sum;
    	}
    }
    vector<ll> cand, U, D;
    for (ll i=0; i<N; i++) {
    	U.push_back(p[i].first - 1);
    	D.push_back(R - p[i].first);
    	for (ll j=i+1; j<N; j++) {
    		cand.push_back(abs(p[i].first - p[j].first));
    	}
    }
    sort(cand.begin(), cand.end());
    cand.erase(unique(cand.begin(), cand.end()), cand.end());
    sort(U.begin(), U.end());
    U.erase(unique(U.begin(), U.end()), U.end());
    sort(D.begin(), D.end());
    D.erase(unique(D.begin(), D.end()), D.end());
    ll ans = inf;
    for (auto &H : cand) {
   		if (H == 0) continue;
    	ans = min(ans, H - 1 + solve(p, H));
    }
    for (auto &u : U) {
    	for (auto &d : D) {
    		ans = min(ans, u + d + solve2(p, u, d));
    	}
    }
    cout << ans << '\n';
}

Compilation message

cultivation.cpp: In function 'll solve2(std::vector<std::pair<long long int, long long int> >&, ll, ll)':
cultivation.cpp:80:19: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<std::pair<long long int, long long int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   80 |     for (ll i=0; i<upd.size(); i++) {
      |                  ~^~~~~~~~~~~
cultivation.cpp:84:19: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<std::pair<long long int, long long int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   84 |         if (i + 1 != upd.size() && upd[i].first == upd[i+1].first) continue;
      |             ~~~~~~^~~~~~~~~~~~~
cultivation.cpp: In function 'int main()':
cultivation.cpp:111:22: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  111 |        for (ll k=0; k<cur.size(); k++) {
      |                     ~^~~~~~~~~~~
cultivation.cpp:120:20: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  120 |    for (ll k=0; k+1<cur.size(); k++) {
      |                 ~~~^~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 2396 KB Output is correct
2 Correct 0 ms 2396 KB Output is correct
3 Correct 1 ms 2396 KB Output is correct
4 Correct 0 ms 2484 KB Output is correct
5 Correct 0 ms 2396 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 1 ms 2396 KB Output is correct
8 Correct 0 ms 2396 KB Output is correct
9 Correct 0 ms 2396 KB Output is correct
10 Correct 1 ms 2396 KB Output is correct
11 Correct 0 ms 2396 KB Output is correct
12 Correct 1 ms 2396 KB Output is correct
13 Correct 0 ms 2396 KB Output is correct
14 Correct 0 ms 2396 KB Output is correct
15 Correct 1 ms 2396 KB Output is correct
16 Correct 0 ms 2396 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 2396 KB Output is correct
2 Correct 0 ms 2396 KB Output is correct
3 Correct 1 ms 2396 KB Output is correct
4 Correct 0 ms 2484 KB Output is correct
5 Correct 0 ms 2396 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 1 ms 2396 KB Output is correct
8 Correct 0 ms 2396 KB Output is correct
9 Correct 0 ms 2396 KB Output is correct
10 Correct 1 ms 2396 KB Output is correct
11 Correct 0 ms 2396 KB Output is correct
12 Correct 1 ms 2396 KB Output is correct
13 Correct 0 ms 2396 KB Output is correct
14 Correct 0 ms 2396 KB Output is correct
15 Correct 1 ms 2396 KB Output is correct
16 Correct 0 ms 2396 KB Output is correct
17 Correct 1 ms 2396 KB Output is correct
18 Correct 1 ms 2652 KB Output is correct
19 Correct 1 ms 2396 KB Output is correct
20 Correct 1 ms 2396 KB Output is correct
21 Correct 1 ms 2652 KB Output is correct
22 Correct 5 ms 2652 KB Output is correct
23 Correct 1 ms 2396 KB Output is correct
24 Correct 8 ms 2908 KB Output is correct
25 Correct 6 ms 2648 KB Output is correct
26 Correct 15 ms 3296 KB Output is correct
27 Correct 15 ms 3292 KB Output is correct
28 Correct 8 ms 2908 KB Output is correct
29 Correct 14 ms 3296 KB Output is correct
30 Correct 15 ms 3308 KB Output is correct
31 Correct 15 ms 3196 KB Output is correct
32 Correct 15 ms 3548 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 2396 KB Output is correct
2 Correct 0 ms 2396 KB Output is correct
3 Correct 1 ms 2396 KB Output is correct
4 Correct 0 ms 2484 KB Output is correct
5 Correct 0 ms 2396 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 1 ms 2396 KB Output is correct
8 Correct 0 ms 2396 KB Output is correct
9 Correct 0 ms 2396 KB Output is correct
10 Correct 1 ms 2396 KB Output is correct
11 Correct 0 ms 2396 KB Output is correct
12 Correct 1 ms 2396 KB Output is correct
13 Correct 0 ms 2396 KB Output is correct
14 Correct 0 ms 2396 KB Output is correct
15 Correct 1 ms 2396 KB Output is correct
16 Correct 0 ms 2396 KB Output is correct
17 Correct 1 ms 2396 KB Output is correct
18 Correct 1 ms 2652 KB Output is correct
19 Correct 1 ms 2396 KB Output is correct
20 Correct 1 ms 2396 KB Output is correct
21 Correct 1 ms 2652 KB Output is correct
22 Correct 5 ms 2652 KB Output is correct
23 Correct 1 ms 2396 KB Output is correct
24 Correct 8 ms 2908 KB Output is correct
25 Correct 6 ms 2648 KB Output is correct
26 Correct 15 ms 3296 KB Output is correct
27 Correct 15 ms 3292 KB Output is correct
28 Correct 8 ms 2908 KB Output is correct
29 Correct 14 ms 3296 KB Output is correct
30 Correct 15 ms 3308 KB Output is correct
31 Correct 15 ms 3196 KB Output is correct
32 Correct 15 ms 3548 KB Output is correct
33 Correct 5 ms 3292 KB Output is correct
34 Correct 18 ms 3296 KB Output is correct
35 Correct 16 ms 3184 KB Output is correct
36 Correct 15 ms 3296 KB Output is correct
37 Correct 16 ms 3296 KB Output is correct
38 Correct 15 ms 3336 KB Output is correct
39 Correct 21 ms 3296 KB Output is correct
40 Correct 15 ms 3292 KB Output is correct
41 Correct 8 ms 3296 KB Output is correct
42 Correct 13 ms 3296 KB Output is correct
43 Correct 15 ms 3296 KB Output is correct
44 Correct 15 ms 3336 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2396 KB Output is correct
2 Correct 1 ms 2396 KB Output is correct
3 Correct 1 ms 2396 KB Output is correct
4 Correct 1 ms 2396 KB Output is correct
5 Correct 1 ms 2396 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 1 ms 2396 KB Output is correct
8 Correct 1 ms 2396 KB Output is correct
9 Correct 1 ms 2396 KB Output is correct
10 Correct 2 ms 2396 KB Output is correct
11 Correct 1 ms 2396 KB Output is correct
12 Correct 1 ms 2396 KB Output is correct
13 Correct 1 ms 2396 KB Output is correct
14 Correct 1 ms 2396 KB Output is correct
15 Correct 1 ms 2396 KB Output is correct
16 Correct 1 ms 2396 KB Output is correct
17 Correct 1 ms 2392 KB Output is correct
18 Correct 1 ms 2396 KB Output is correct
19 Correct 2 ms 2396 KB Output is correct
20 Correct 1 ms 2396 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2396 KB Output is correct
2 Correct 1 ms 2396 KB Output is correct
3 Correct 1 ms 2396 KB Output is correct
4 Correct 1 ms 2396 KB Output is correct
5 Correct 1 ms 2396 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 1 ms 2396 KB Output is correct
8 Correct 1 ms 2396 KB Output is correct
9 Correct 1 ms 2396 KB Output is correct
10 Correct 2 ms 2396 KB Output is correct
11 Correct 1 ms 2396 KB Output is correct
12 Correct 1 ms 2396 KB Output is correct
13 Correct 1 ms 2396 KB Output is correct
14 Correct 1 ms 2396 KB Output is correct
15 Correct 1 ms 2396 KB Output is correct
16 Correct 1 ms 2396 KB Output is correct
17 Correct 1 ms 2392 KB Output is correct
18 Correct 1 ms 2396 KB Output is correct
19 Correct 2 ms 2396 KB Output is correct
20 Correct 1 ms 2396 KB Output is correct
21 Correct 49 ms 2652 KB Output is correct
22 Correct 49 ms 2648 KB Output is correct
23 Correct 47 ms 2648 KB Output is correct
24 Correct 51 ms 2756 KB Output is correct
25 Correct 49 ms 2652 KB Output is correct
26 Correct 20 ms 2648 KB Output is correct
27 Correct 71 ms 2652 KB Output is correct
28 Correct 68 ms 2648 KB Output is correct
29 Correct 49 ms 2652 KB Output is correct
30 Correct 49 ms 2648 KB Output is correct
31 Correct 50 ms 2648 KB Output is correct
32 Correct 47 ms 2648 KB Output is correct
33 Correct 55 ms 2648 KB Output is correct
34 Correct 49 ms 2648 KB Output is correct
35 Correct 48 ms 2648 KB Output is correct
36 Correct 69 ms 2652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 2396 KB Output is correct
2 Correct 0 ms 2396 KB Output is correct
3 Correct 1 ms 2396 KB Output is correct
4 Correct 0 ms 2484 KB Output is correct
5 Correct 0 ms 2396 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 1 ms 2396 KB Output is correct
8 Correct 0 ms 2396 KB Output is correct
9 Correct 0 ms 2396 KB Output is correct
10 Correct 1 ms 2396 KB Output is correct
11 Correct 0 ms 2396 KB Output is correct
12 Correct 1 ms 2396 KB Output is correct
13 Correct 0 ms 2396 KB Output is correct
14 Correct 0 ms 2396 KB Output is correct
15 Correct 1 ms 2396 KB Output is correct
16 Correct 0 ms 2396 KB Output is correct
17 Correct 1 ms 2396 KB Output is correct
18 Correct 1 ms 2652 KB Output is correct
19 Correct 1 ms 2396 KB Output is correct
20 Correct 1 ms 2396 KB Output is correct
21 Correct 1 ms 2652 KB Output is correct
22 Correct 5 ms 2652 KB Output is correct
23 Correct 1 ms 2396 KB Output is correct
24 Correct 8 ms 2908 KB Output is correct
25 Correct 6 ms 2648 KB Output is correct
26 Correct 15 ms 3296 KB Output is correct
27 Correct 15 ms 3292 KB Output is correct
28 Correct 8 ms 2908 KB Output is correct
29 Correct 14 ms 3296 KB Output is correct
30 Correct 15 ms 3308 KB Output is correct
31 Correct 15 ms 3196 KB Output is correct
32 Correct 15 ms 3548 KB Output is correct
33 Correct 5 ms 3292 KB Output is correct
34 Correct 18 ms 3296 KB Output is correct
35 Correct 16 ms 3184 KB Output is correct
36 Correct 15 ms 3296 KB Output is correct
37 Correct 16 ms 3296 KB Output is correct
38 Correct 15 ms 3336 KB Output is correct
39 Correct 21 ms 3296 KB Output is correct
40 Correct 15 ms 3292 KB Output is correct
41 Correct 8 ms 3296 KB Output is correct
42 Correct 13 ms 3296 KB Output is correct
43 Correct 15 ms 3296 KB Output is correct
44 Correct 15 ms 3336 KB Output is correct
45 Correct 1 ms 2396 KB Output is correct
46 Correct 1 ms 2396 KB Output is correct
47 Correct 1 ms 2396 KB Output is correct
48 Correct 1 ms 2396 KB Output is correct
49 Correct 1 ms 2396 KB Output is correct
50 Correct 1 ms 2396 KB Output is correct
51 Correct 1 ms 2396 KB Output is correct
52 Correct 1 ms 2396 KB Output is correct
53 Correct 1 ms 2396 KB Output is correct
54 Correct 2 ms 2396 KB Output is correct
55 Correct 1 ms 2396 KB Output is correct
56 Correct 1 ms 2396 KB Output is correct
57 Correct 1 ms 2396 KB Output is correct
58 Correct 1 ms 2396 KB Output is correct
59 Correct 1 ms 2396 KB Output is correct
60 Correct 1 ms 2396 KB Output is correct
61 Correct 1 ms 2392 KB Output is correct
62 Correct 1 ms 2396 KB Output is correct
63 Correct 2 ms 2396 KB Output is correct
64 Correct 1 ms 2396 KB Output is correct
65 Correct 49 ms 2652 KB Output is correct
66 Correct 49 ms 2648 KB Output is correct
67 Correct 47 ms 2648 KB Output is correct
68 Correct 51 ms 2756 KB Output is correct
69 Correct 49 ms 2652 KB Output is correct
70 Correct 20 ms 2648 KB Output is correct
71 Correct 71 ms 2652 KB Output is correct
72 Correct 68 ms 2648 KB Output is correct
73 Correct 49 ms 2652 KB Output is correct
74 Correct 49 ms 2648 KB Output is correct
75 Correct 50 ms 2648 KB Output is correct
76 Correct 47 ms 2648 KB Output is correct
77 Correct 55 ms 2648 KB Output is correct
78 Correct 49 ms 2648 KB Output is correct
79 Correct 48 ms 2648 KB Output is correct
80 Correct 69 ms 2652 KB Output is correct
81 Correct 574 ms 2904 KB Output is correct
82 Correct 576 ms 2904 KB Output is correct
83 Correct 769 ms 3040 KB Output is correct
84 Correct 893 ms 3040 KB Output is correct
85 Correct 1681 ms 3296 KB Output is correct
86 Correct 1655 ms 3292 KB Output is correct
87 Correct 1177 ms 3296 KB Output is correct
88 Correct 1655 ms 3296 KB Output is correct
89 Correct 1683 ms 3296 KB Output is correct
90 Correct 1262 ms 3296 KB Output is correct
91 Correct 1694 ms 3344 KB Output is correct
92 Correct 1749 ms 3296 KB Output is correct
93 Correct 1678 ms 3296 KB Output is correct
94 Correct 1769 ms 3152 KB Output is correct
95 Correct 1717 ms 3296 KB Output is correct
96 Correct 1677 ms 3292 KB Output is correct
97 Correct 1633 ms 3292 KB Output is correct
98 Correct 7 ms 3292 KB Output is correct