Submission #1071585

# Submission time Handle Problem Language Result Execution time Memory
1071585 2024-08-23T09:04:30 Z Gromp15 Sky Walking (IOI19_walk) C++17
0 / 100
1817 ms 216556 KB
#include <bits/stdc++.h>
#define ll long long
#define ar array
#define sz(x) (int)x.size()
#define all(x) x.begin(), x.end()
#include "walk.h"
using namespace std;
template<typename T> bool ckmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; }
template<typename T> bool ckmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }

const ll INF = 1e18;

struct seg {
	int N; vector<multiset<ll>> tree;
	seg(int n) : N(1<<(__lg(n)+1)), tree(2*N) {}
	void add(int pos, ll x) {
		for (int i = pos + N; i; i >>= 1) {
			tree[i].insert(x);
		}
	}
	void del(int pos, ll x) {
		for (int i = pos + N; i; i >>= 1) {
			tree[i].erase(tree[i].find(x));
		}
	}
	ll query(int node, int nl, int nr, int ql, int qr) {
		if (ql > nr || qr < nl) return INF;
		if (ql <= nl && nr <= qr) return tree[node].size() ? *tree[node].begin() : INF;
		int mid = (nl+nr)/2;
		return min(query(node*2, nl, mid, ql, qr), query(node*2+1, mid+1, nr, ql, qr));
	}
	ll query(int l, int r) {
		return query(1, 0, N-1, l, r);
	}
};

long long min_distance(std::vector<int> x, std::vector<int> h, std::vector<int> l, std::vector<int> r, std::vector<int> y, int s, int g) {
	int n = sz(x), m = sz(l);
	if (s == 0 && g == n-1) {
		vector<ar<int, 3>> lines;
		for (int i = 0; i < m; i++) lines.push_back({l[i], r[i], y[i]});
		sort(all(lines));
		vector<ll> dp(m, INF);
		sort(all(y));
		y.erase(unique(all(y)), y.end());
		const int N = sz(y);
		auto compress = [&](int x) {
			return lower_bound(all(y), x) - y.begin();
		};
		seg st1(N), st2(N);
		for (auto &[l, r, y] : lines) y = compress(y);
		for (int i = 0; i < m; i++) if (lines[i][0] == 0) dp[i] = y[lines[i][2]];
		vector<vector<int>> rem(n);
		int t = 0;
		for (int i = 0; i < m; i++) {
			while (t <= min(n-1, lines[i][0])) {
				for (int x : rem[t]) {
					st1.del(lines[x][2], dp[x] - y[lines[x][2]]);
					st2.del(lines[x][2], dp[x] + y[lines[x][2]]);
				}
				t++;
			}
			ckmin(dp[i], y[lines[i][2]] + st1.query(0, lines[i][2]));
			ckmin(dp[i], -y[lines[i][2]] + st2.query(lines[i][2], N-1));
			st1.add(lines[i][2], dp[i] - y[lines[i][2]]);
			st2.add(lines[i][2], dp[i] + y[lines[i][2]]);
			if (lines[i][1] + 1 < n) rem[lines[i][1]+1].emplace_back(i);
		}
		ll ans = INF;
		for (int i = 0; i < m; i++) if (lines[i][1] == n-1) ckmin(ans, dp[i] + y[lines[i][2]]);
		return ans == INF ? -1 : ans + x[n-1];
	}
	vector<int> idx(n);
	iota(all(idx), 0);
	sort(all(idx), [&](int x, int y) { return h[x] > h[y]; });
	vector<int> idx2(m);
	iota(all(idx2), 0);
	sort(all(idx2), [&](int X, int Y) { return y[X] > y[Y]; });
	set<int> who;
	vector<ar<int, 3>> edges;
	for (int i = 0, on = 0; i < m; i++) {
		int L = l[idx2[i]], R = r[idx2[i]], H = y[idx2[i]];
		while (on < n && h[idx[on]] >= H) {
			who.insert(idx[on++]);
		}
		int lst = -1;
		auto it1 = who.lower_bound(L);
		if (it1 == who.end() || *it1 > R) continue;
		lst = *it1;
		while (1) {
			auto it = who.upper_bound(lst);
			if (it == who.end() || *it > R) break;
			edges.push_back({lst, *it, H});
			lst = *it;
		}
	}
	vector<vector<int>> nodes(n);
	vector<map<int, vector<int>>> adj(n);
	for (auto [l, r, H] : edges) {
		nodes[l].emplace_back(H);
		nodes[r].emplace_back(H);
		adj[l][H].push_back(r);
		adj[r][H].push_back(l);
	}
	nodes[s].emplace_back(0);
	nodes[g].emplace_back(0);
	for (int i = 0; i < n; i++) {
		sort(all(nodes[i]));
		nodes[i].erase(unique(all(nodes[i])), nodes[i].end());
	}
	vector<map<int, ll>> dist(n);
	dist[s][0] = 0;
	priority_queue<ar<ll, 3>, vector<ar<ll, 3>>, greater<ar<ll, 3>>> q;
	q.push({0, s, 0});
	auto rlx = [&](int v1, int x1, int v2, int x2) {
		ll new_dist = dist[v1][x1] + abs(x[v1] - x[v2]) + abs(x1 - x2);
		if (!dist[v2].count(x2) || dist[v2][x2] > new_dist) {
			dist[v2][x2] = new_dist;
			q.push({dist[v2][x2], v2, x2});
		}
	};
	while (q.size()) {
		auto [cost, v, i] = q.top(); q.pop();
		if (cost != dist[v][i]) continue;
		auto it = upper_bound(all(nodes[v]), i);
		if (it != nodes[v].end() && *it <= h[v]) {
			rlx(v, i, v, *it);
		}
		assert(it != nodes[v].begin());
		it--;
		if (it != nodes[v].begin() && i <= h[v]) {
			rlx(v, i, v, *prev(it));
		}
		for (int x : adj[v][i]) {
			rlx(v, i, x, i);
		}
	}
	return dist[g].count(0) ? dist[g][0] : -1;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Incorrect 1 ms 348 KB Output isn't correct
17 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1366 ms 141528 KB Output is correct
4 Correct 825 ms 158824 KB Output is correct
5 Correct 398 ms 100068 KB Output is correct
6 Correct 353 ms 89456 KB Output is correct
7 Correct 372 ms 99840 KB Output is correct
8 Correct 1817 ms 180260 KB Output is correct
9 Correct 502 ms 102996 KB Output is correct
10 Correct 1309 ms 216556 KB Output is correct
11 Correct 429 ms 77140 KB Output is correct
12 Incorrect 212 ms 36296 KB Output isn't correct
13 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 31 ms 3276 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 31 ms 3276 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Incorrect 1 ms 348 KB Output isn't correct
17 Halted 0 ms 0 KB -