Submission #1071550

# Submission time Handle Problem Language Result Execution time Memory
1071550 2024-08-23T08:39:08 Z bleahbleah Beech Tree (IOI23_beechtree) C++17
37 / 100
2000 ms 165448 KB
#include "beechtree.h"
#include <bits/stdc++.h>
#define all(x) (x).begin(),(x).end()
using namespace std;

using ll = long long;
using ld = long double;

//#define int ll
#define sz(x) ((int)(x).size())

using pii = pair<int,int>;
using tii = tuple<int,int,int>;

const int nmax = 3e5 + 5;

const int mod = 998244853;
struct Mint {
  int val;
  Mint(ll x = 0): val((x % mod + mod) % mod) {;}
  Mint operator +(const Mint& x) const { return Mint(val + x.val); }
  Mint operator -(const Mint& x) const { return Mint(val - x.val); }
  Mint operator *(const Mint& x) const { return Mint((ll)val * x.val); }
  Mint operator +=(const Mint& x) { return *this = Mint(val + x.val); }
  Mint operator -=(const Mint& x) { return *this = Mint(val - x.val); }
  Mint operator *=(const Mint& x) { return *this = Mint((ll)val * x.val); }
  Mint operator ^(const int& _b) const {
    Mint accum = 1, a = *this;
    int b = _b;
    while(b) {
      accum = (b & 1? accum * a : accum);
      a *= a;
      b >>= 1;
    }
    return accum;
  }
  Mint operator /(const Mint& x) { return Mint((ll)val * (x ^ (mod - 2)).val); }
  Mint operator /=(const Mint& x) { return *this = Mint((ll)val * (x ^ (mod - 2)).val); }
};

Mint p[2][nmax];

#define hash bjsefdjhsdsfhoi
struct hash {
   Mint v[2];
   int len;
   hash(Mint a, Mint b, int c) { v[0] = a; v[1] = b; len = c; }
   hash(Mint a) { v[0] = a; v[1] = a; len = 1; }
   hash() { v[0] = 0; v[1] = 0; len = 0; }
   hash operator +(const hash& x) const {
      return hash(v[0] * p[0][x.len] + x.v[0], v[1] * p[1][x.len] + x.v[1], len + x.len);
   }
   hash operator -(const hash& x) const {
      return hash(v[0] - p[0][len - x.len] * x.v[0], v[1] - p[1][len - x.len] * x.v[1], len - x.len); 
   }
   hash operator += (const hash& x) { return *this = *this + x; }
   hash operator -= (const hash& x) { return *this = *this - x; }
   bool operator !=(const hash& x) const {
      return v[0].val != x.v[0].val || v[1].val != x.v[1].val || len != x.len;
   }
   ll operator()() const { return (ll)v[0].val * mod + v[1].val; }
   bool operator < (const hash& x) const { return (*this)() < x(); }
   bool operator == (const hash& x) const { return (*this)() == x(); }
};



vector<pii> g[nmax];
vector<pii> invg[nmax];
vector<int> P, C;

bool isanc(unordered_set<int>& A, unordered_set<int>& B) {
   if(sz(A) < sz(B)) return 0;
   for(auto &x : B)
      if(!A.count(x)) return 0;
   return 1;
}

vector<int> sol;
int area[nmax], pin[nmax], pout[nmax], inp;
hash subarb[nmax];

hash eulerH[nmax], dH[nmax];
pii euler[nmax];
int poz;


void init(int node) {
   sort(all(g[node]), [&](auto a, auto b) { return a.second < b.second; });
   euler[++poz] = pii{node, 0};
   eulerH[poz] = eulerH[poz - 1] + hash(2 * C[node] + 0);
   pin[node] = poz + 1;
   
   area[node] = 1;
   for(auto [x, c] : g[node])
      dH[x] = dH[node] + hash(c), init(x), area[node] += area[x];
      
   pout[node] = poz;
   euler[++poz] = pii{node, 1};
   eulerH[poz] = eulerH[poz - 1] + hash(2 * C[node] + 1);
}

vector<int> difference(int node, int other) {
   vector<int> ass_list;
   auto getL = [&](int l, int r) {
      return eulerH[r + pin[node]] - eulerH[l + pin[node] - 1];
   };
   auto getR = [&](int l, int r) {
      return eulerH[r + pin[other]] - eulerH[l + pin[other] - 1];
   };
   
   auto visit = [&](auto&& self, int nod, int& r) -> void {
      //cerr << nod << '\n';
      r++;
      ass_list.emplace_back(nod);
      for(auto [x, c] : g[nod]) self(self, x, r);
      r++;
   };
   
   int l0 = 0, r0 = 0, END0 = pout[node] - pin[node] + 1, l1 = 0, r1 = 0, END1 = pout[other] - pin[other] + 1;
   
   //cerr << node << ", " << other << '\n';
   //for(int i = 0; i < END0; i++) cerr << getL(i, i).v[0].val << ' '; cerr << '\n';
   //for(int i = 0; i < END1; i++) cerr << getR(i, i).v[0].val << ' '; cerr << '\n';
   
   while(l0 < END0 && l1 < END1) {
      r0 = l0 - 1, r1 = l1 - 1;
      for(int lim = 1 << 18; lim > 0; lim >>= 1) {
         if(r0 + lim < END0 && r1 + lim < END1 && getL(l0, r0 + lim)() == getR(l1, r1 + lim)()) r0 += lim, r1 += lim;
      }
      if(r0 == END0 - 1 || r1 == END1 - 1);
      else {
         auto [nxt0, t0] = euler[pin[node] + r0 + 1];
         auto [nxt1, t1] = euler[pin[other] + r1 + 1];
         //cerr << nxt0 << ' ' << t0 << '\t' << nxt1 << ' ' << t1 << '\t' << r0 << ", " << r1 << '\n';
         if(t1 == 0 && C[nxt1] < C[nxt0]) return {-1};
         if(t0 == 1) return {-1};
         visit(visit, nxt0, r0);
      }
      l0 = r0 + 1;
      l1 = r1 + 1;
   }
   //cerr << "<\\>\n";
   if(l0 == END0 && l1 < END1) return {-1};
   
   
   while(l0 < END0) {
      auto [nxt0, t0] = euler[pin[node] + l0];
      visit(visit, nxt0, l0);
   }
   //cerr << "<\\>\n";
   
   return ass_list;
}

#define erset set

struct PartDiff {
   map<int, erset<hash>> onlevel;
   map<hash, int> inverse;
   
   bool feasable = 1;
   
   void add(int dim, int prevdim, erset<hash> ths) {
      if(!feasable) return;
      if(onlevel.count(dim)) {
         for(auto x : ths) {
            if(inverse.count(x) == 0) { feasable = 0; return; }
            if(inverse[x] > dim) { feasable = 0; return; }
         }
      }
      else {
         auto it = onlevel.upper_bound(dim);
         int bigger = -1;
         
         if(it == onlevel.end()); else bigger = it -> first;
         
         
         for(auto x : ths) {
            if(inverse.count(x) == 0) { if(bigger == -1) { ; } else { feasable = 0; return; } }
            else {
               if(inverse[x] > dim) { 
                  if(inverse[x] == bigger) { onlevel[bigger].erase(x); } // o sa il pun, dar n-are ce cauta aici
                  else { feasable = 0; return; } // prost
               }
               else { assert(inverse[x] < dim); 
                  if(inverse[x] > prevdim) { continue; } // nu vreau sa il pun
                  else { feasable = 0; return; } // prost
               }
            }
            onlevel[dim].emplace(x);
            inverse[x] = dim;
         }
      }
   }
   void add(PartDiff& x) {
      if(!feasable) return;
      if(!x.feasable) { feasable = 0; return; }
      if(sz(x.inverse) > sz(inverse)) swap(x, *this); 
      int prv = -1;
      for(auto [h, v] : x.onlevel) {
         add(h, prv, v);
         prv = h;
      }
      x.onlevel.clear();
      x.inverse.clear();
      return;
   }
};


PartDiff dfs(int node) {
   PartDiff mine;
   int heavyson = -1;
   for(auto &[x, c] : g[node]) {
      auto T = dfs(x);
      //cout << x << " pula \n" << T.feasable << '\n';
      mine.add(T);  // asta teoretic e useless ca din superimpozabilitate toate vor fi deja acolo, e mai mult un fel de check :clown:
                    // oare checkul simplu poate fi facut mai putin cretin thinking thinking
      //cout << x << " pula \n" << T.feasable << '\n';
      if(heavyson == -1 || area[x] > area[heavyson]) heavyson = x;
      //cout << node << ' ' << x << '\t' << mine.feasable << ' ' << T.feasable << '\n';
   }
   
   if(sz(g[node]) != sz(invg[node])) {  mine.feasable = sol[node] = 0; return mine; }
   
   if(heavyson == -1) {
      erset<hash> pl; pl.emplace(hash());
      mine.add(1, -1, pl);
   }
   else {
      auto sons = difference(node, heavyson);
      if(sz(sons) && sons[0] == -1) { mine.feasable = sol[node] = 0; return mine; }
      
      erset<hash> pl;
      for(auto x : sons)
         pl.emplace(dH[x] - dH[node]);
      mine.add(area[node], area[heavyson], pl);
   }
   sol[node] = mine.feasable;
   return mine;
}

std::vector<int> beechtree(int N, int M, std::vector<int> P_, std::vector<int> C_) {
   mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
   p[0][0] = p[1][0] = 1;
   p[0][1] = rng() % (mod - 1000) + 503;
   #ifdef DLOCAL
      p[0][1] = 10;
   #endif
   p[1][1] = rng() % (mod - 1200) + 505;
   for(int i = 2; i < nmax; i++)
      p[0][i] = p[0][i - 1] * p[0][1],
      p[1][i] = p[1][i - 1] * p[1][1];
      
   P = P_;
   C = C_;
   for(int i = 1; i < N; i++) {
      g[P[i]].emplace_back(i, C[i]);
      invg[P[i]].emplace_back(C[i], -1);
   }
   for(int i = 0; i < N; i++) sort(all(invg[i])), invg[i].erase(unique(all(invg[i])), end(invg[i]));
   sol.assign(N, 0);
   init(0);
   dfs(0);
   
   
   return sol;
}

/**
      Töte es durch genaue Untersuchung\Töte es kann es nur noch schlimmer machen\Es lässt es irgendwie atmen
--
*/ 

Compilation message

beechtree.cpp: In function 'PartDiff dfs(int)':
beechtree.cpp:225:67: warning: suggest parentheses around assignment used as truth value [-Wparentheses]
  225 |    if(sz(g[node]) != sz(invg[node])) {  mine.feasable = sol[node] = 0; return mine; }
beechtree.cpp:233:65: warning: suggest parentheses around assignment used as truth value [-Wparentheses]
  233 |       if(sz(sons) && sons[0] == -1) { mine.feasable = sol[node] = 0; return mine; }
# Verdict Execution time Memory Grader output
1 Correct 7 ms 31068 KB Output is correct
2 Correct 7 ms 31108 KB Output is correct
3 Correct 7 ms 31068 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 31084 KB Output is correct
2 Correct 7 ms 31068 KB Output is correct
3 Correct 7 ms 31068 KB Output is correct
4 Correct 8 ms 31068 KB Output is correct
5 Correct 8 ms 31064 KB Output is correct
6 Correct 8 ms 31068 KB Output is correct
7 Correct 8 ms 31068 KB Output is correct
8 Correct 7 ms 31068 KB Output is correct
9 Correct 7 ms 31068 KB Output is correct
10 Correct 7 ms 31068 KB Output is correct
11 Correct 7 ms 31064 KB Output is correct
12 Correct 7 ms 31068 KB Output is correct
13 Correct 8 ms 31064 KB Output is correct
14 Correct 8 ms 31068 KB Output is correct
15 Correct 7 ms 31068 KB Output is correct
16 Correct 8 ms 31068 KB Output is correct
17 Correct 7 ms 31068 KB Output is correct
18 Correct 8 ms 31096 KB Output is correct
19 Correct 7 ms 31068 KB Output is correct
20 Correct 7 ms 31096 KB Output is correct
21 Correct 7 ms 31068 KB Output is correct
22 Correct 7 ms 31068 KB Output is correct
23 Correct 7 ms 31068 KB Output is correct
24 Correct 7 ms 31056 KB Output is correct
25 Correct 8 ms 31064 KB Output is correct
26 Correct 7 ms 31068 KB Output is correct
27 Correct 7 ms 31064 KB Output is correct
28 Correct 7 ms 31068 KB Output is correct
29 Correct 7 ms 31068 KB Output is correct
30 Correct 7 ms 31068 KB Output is correct
31 Correct 7 ms 31068 KB Output is correct
32 Correct 8 ms 31068 KB Output is correct
33 Correct 8 ms 31320 KB Output is correct
34 Correct 7 ms 31068 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 31084 KB Output is correct
2 Correct 7 ms 31068 KB Output is correct
3 Correct 7 ms 31068 KB Output is correct
4 Correct 8 ms 31068 KB Output is correct
5 Correct 8 ms 31064 KB Output is correct
6 Correct 8 ms 31068 KB Output is correct
7 Execution timed out 2060 ms 121528 KB Time limit exceeded
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 8 ms 31064 KB Output is correct
2 Correct 8 ms 31068 KB Output is correct
3 Correct 8 ms 31068 KB Output is correct
4 Correct 7 ms 31068 KB Output is correct
5 Correct 7 ms 31068 KB Output is correct
6 Correct 7 ms 31068 KB Output is correct
7 Correct 8 ms 31064 KB Output is correct
8 Correct 8 ms 31068 KB Output is correct
9 Correct 7 ms 31064 KB Output is correct
10 Correct 8 ms 31068 KB Output is correct
11 Correct 9 ms 31324 KB Output is correct
12 Correct 8 ms 31080 KB Output is correct
13 Correct 8 ms 31056 KB Output is correct
14 Correct 8 ms 31324 KB Output is correct
15 Incorrect 221 ms 64832 KB 2nd lines differ - on the 1st token, expected: '0', found: '1'
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 7 ms 31084 KB Output is correct
2 Correct 7 ms 31068 KB Output is correct
3 Correct 8 ms 31068 KB Output is correct
4 Correct 7 ms 31068 KB Output is correct
5 Execution timed out 2060 ms 121528 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 7 ms 31068 KB Output is correct
2 Correct 7 ms 31108 KB Output is correct
3 Correct 7 ms 31068 KB Output is correct
4 Correct 7 ms 31084 KB Output is correct
5 Correct 7 ms 31068 KB Output is correct
6 Correct 7 ms 31068 KB Output is correct
7 Correct 8 ms 31068 KB Output is correct
8 Correct 8 ms 31064 KB Output is correct
9 Correct 8 ms 31068 KB Output is correct
10 Correct 8 ms 31068 KB Output is correct
11 Correct 7 ms 31068 KB Output is correct
12 Correct 7 ms 31068 KB Output is correct
13 Correct 7 ms 31068 KB Output is correct
14 Correct 7 ms 31064 KB Output is correct
15 Correct 7 ms 31068 KB Output is correct
16 Correct 8 ms 31064 KB Output is correct
17 Correct 8 ms 31068 KB Output is correct
18 Correct 7 ms 31068 KB Output is correct
19 Correct 8 ms 31068 KB Output is correct
20 Correct 7 ms 31068 KB Output is correct
21 Correct 8 ms 31096 KB Output is correct
22 Correct 7 ms 31068 KB Output is correct
23 Correct 7 ms 31096 KB Output is correct
24 Correct 7 ms 31068 KB Output is correct
25 Correct 7 ms 31068 KB Output is correct
26 Correct 7 ms 31068 KB Output is correct
27 Correct 7 ms 31056 KB Output is correct
28 Correct 8 ms 31064 KB Output is correct
29 Correct 7 ms 31068 KB Output is correct
30 Correct 7 ms 31064 KB Output is correct
31 Correct 7 ms 31068 KB Output is correct
32 Correct 7 ms 31068 KB Output is correct
33 Correct 7 ms 31068 KB Output is correct
34 Correct 7 ms 31068 KB Output is correct
35 Correct 8 ms 31068 KB Output is correct
36 Correct 8 ms 31320 KB Output is correct
37 Correct 7 ms 31068 KB Output is correct
38 Correct 8 ms 31064 KB Output is correct
39 Correct 8 ms 31068 KB Output is correct
40 Correct 8 ms 31068 KB Output is correct
41 Correct 7 ms 31068 KB Output is correct
42 Correct 7 ms 31068 KB Output is correct
43 Correct 7 ms 31068 KB Output is correct
44 Correct 8 ms 31064 KB Output is correct
45 Correct 8 ms 31068 KB Output is correct
46 Correct 7 ms 31064 KB Output is correct
47 Correct 8 ms 31068 KB Output is correct
48 Correct 7 ms 31064 KB Output is correct
49 Correct 7 ms 31064 KB Output is correct
50 Correct 8 ms 31068 KB Output is correct
51 Correct 8 ms 31100 KB Output is correct
52 Correct 7 ms 31064 KB Output is correct
53 Correct 7 ms 31320 KB Output is correct
54 Correct 8 ms 31068 KB Output is correct
55 Correct 7 ms 31096 KB Output is correct
56 Correct 7 ms 31064 KB Output is correct
57 Correct 7 ms 31068 KB Output is correct
58 Correct 7 ms 31068 KB Output is correct
59 Correct 7 ms 31064 KB Output is correct
60 Correct 7 ms 31148 KB Output is correct
61 Correct 7 ms 31068 KB Output is correct
62 Correct 8 ms 31068 KB Output is correct
63 Correct 7 ms 31068 KB Output is correct
64 Correct 7 ms 31068 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 31084 KB Output is correct
2 Correct 7 ms 31068 KB Output is correct
3 Correct 8 ms 31068 KB Output is correct
4 Correct 7 ms 31068 KB Output is correct
5 Correct 7 ms 31068 KB Output is correct
6 Correct 7 ms 31068 KB Output is correct
7 Correct 7 ms 31064 KB Output is correct
8 Correct 7 ms 31068 KB Output is correct
9 Correct 8 ms 31064 KB Output is correct
10 Correct 8 ms 31068 KB Output is correct
11 Correct 7 ms 31068 KB Output is correct
12 Correct 8 ms 31068 KB Output is correct
13 Correct 7 ms 31068 KB Output is correct
14 Correct 8 ms 31096 KB Output is correct
15 Correct 7 ms 31068 KB Output is correct
16 Correct 7 ms 31096 KB Output is correct
17 Correct 7 ms 31068 KB Output is correct
18 Correct 7 ms 31068 KB Output is correct
19 Correct 7 ms 31068 KB Output is correct
20 Correct 7 ms 31056 KB Output is correct
21 Correct 8 ms 31064 KB Output is correct
22 Correct 7 ms 31068 KB Output is correct
23 Correct 7 ms 31064 KB Output is correct
24 Correct 7 ms 31068 KB Output is correct
25 Correct 10 ms 32348 KB Output is correct
26 Correct 15 ms 32264 KB Output is correct
27 Correct 12 ms 32092 KB Output is correct
28 Correct 16 ms 31836 KB Output is correct
29 Correct 10 ms 32348 KB Output is correct
30 Correct 9 ms 31532 KB Output is correct
31 Correct 14 ms 31652 KB Output is correct
32 Correct 11 ms 31380 KB Output is correct
33 Correct 9 ms 31324 KB Output is correct
34 Correct 14 ms 31568 KB Output is correct
35 Correct 11 ms 31388 KB Output is correct
36 Correct 10 ms 31288 KB Output is correct
37 Correct 10 ms 31580 KB Output is correct
38 Correct 10 ms 31380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 31068 KB Output is correct
2 Correct 7 ms 31108 KB Output is correct
3 Correct 7 ms 31068 KB Output is correct
4 Correct 7 ms 31084 KB Output is correct
5 Correct 7 ms 31068 KB Output is correct
6 Correct 7 ms 31068 KB Output is correct
7 Correct 8 ms 31068 KB Output is correct
8 Correct 8 ms 31064 KB Output is correct
9 Correct 8 ms 31068 KB Output is correct
10 Correct 8 ms 31068 KB Output is correct
11 Correct 7 ms 31068 KB Output is correct
12 Correct 7 ms 31068 KB Output is correct
13 Correct 7 ms 31068 KB Output is correct
14 Correct 7 ms 31064 KB Output is correct
15 Correct 7 ms 31068 KB Output is correct
16 Correct 8 ms 31064 KB Output is correct
17 Correct 8 ms 31068 KB Output is correct
18 Correct 7 ms 31068 KB Output is correct
19 Correct 8 ms 31068 KB Output is correct
20 Correct 7 ms 31068 KB Output is correct
21 Correct 8 ms 31096 KB Output is correct
22 Correct 7 ms 31068 KB Output is correct
23 Correct 7 ms 31096 KB Output is correct
24 Correct 7 ms 31068 KB Output is correct
25 Correct 7 ms 31068 KB Output is correct
26 Correct 7 ms 31068 KB Output is correct
27 Correct 7 ms 31056 KB Output is correct
28 Correct 8 ms 31064 KB Output is correct
29 Correct 7 ms 31068 KB Output is correct
30 Correct 7 ms 31064 KB Output is correct
31 Correct 7 ms 31068 KB Output is correct
32 Correct 7 ms 31068 KB Output is correct
33 Correct 7 ms 31068 KB Output is correct
34 Correct 7 ms 31068 KB Output is correct
35 Correct 8 ms 31068 KB Output is correct
36 Correct 8 ms 31320 KB Output is correct
37 Correct 7 ms 31068 KB Output is correct
38 Correct 7 ms 31064 KB Output is correct
39 Correct 7 ms 31064 KB Output is correct
40 Correct 8 ms 31068 KB Output is correct
41 Correct 8 ms 31100 KB Output is correct
42 Correct 8 ms 31064 KB Output is correct
43 Correct 8 ms 31068 KB Output is correct
44 Correct 8 ms 31068 KB Output is correct
45 Correct 7 ms 31068 KB Output is correct
46 Correct 7 ms 31068 KB Output is correct
47 Correct 7 ms 31068 KB Output is correct
48 Correct 8 ms 31064 KB Output is correct
49 Correct 8 ms 31068 KB Output is correct
50 Correct 7 ms 31064 KB Output is correct
51 Correct 8 ms 31068 KB Output is correct
52 Correct 9 ms 31324 KB Output is correct
53 Correct 8 ms 31080 KB Output is correct
54 Correct 8 ms 31056 KB Output is correct
55 Correct 8 ms 31324 KB Output is correct
56 Correct 7 ms 31064 KB Output is correct
57 Correct 7 ms 31320 KB Output is correct
58 Correct 8 ms 31068 KB Output is correct
59 Correct 7 ms 31096 KB Output is correct
60 Correct 7 ms 31064 KB Output is correct
61 Correct 7 ms 31068 KB Output is correct
62 Correct 7 ms 31068 KB Output is correct
63 Correct 7 ms 31064 KB Output is correct
64 Correct 7 ms 31148 KB Output is correct
65 Correct 7 ms 31068 KB Output is correct
66 Correct 8 ms 31068 KB Output is correct
67 Correct 7 ms 31068 KB Output is correct
68 Correct 7 ms 31068 KB Output is correct
69 Correct 10 ms 32348 KB Output is correct
70 Correct 15 ms 32264 KB Output is correct
71 Correct 12 ms 32092 KB Output is correct
72 Correct 16 ms 31836 KB Output is correct
73 Correct 10 ms 32348 KB Output is correct
74 Correct 9 ms 31532 KB Output is correct
75 Correct 14 ms 31652 KB Output is correct
76 Correct 11 ms 31380 KB Output is correct
77 Correct 9 ms 31324 KB Output is correct
78 Correct 14 ms 31568 KB Output is correct
79 Correct 11 ms 31388 KB Output is correct
80 Correct 10 ms 31288 KB Output is correct
81 Correct 10 ms 31580 KB Output is correct
82 Correct 10 ms 31380 KB Output is correct
83 Correct 11 ms 32348 KB Output is correct
84 Correct 10 ms 32288 KB Output is correct
85 Correct 17 ms 31836 KB Output is correct
86 Correct 16 ms 31836 KB Output is correct
87 Correct 8 ms 31324 KB Output is correct
88 Correct 8 ms 31140 KB Output is correct
89 Correct 11 ms 32092 KB Output is correct
90 Correct 9 ms 31332 KB Output is correct
91 Correct 13 ms 31580 KB Output is correct
92 Correct 11 ms 31316 KB Output is correct
93 Correct 9 ms 31324 KB Output is correct
94 Correct 13 ms 31648 KB Output is correct
95 Incorrect 11 ms 31324 KB 2nd lines differ - on the 1199th token, expected: '0', found: '1'
96 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 7 ms 31084 KB Output is correct
2 Correct 7 ms 31068 KB Output is correct
3 Correct 8 ms 31068 KB Output is correct
4 Correct 7 ms 31068 KB Output is correct
5 Correct 7 ms 31068 KB Output is correct
6 Correct 7 ms 31068 KB Output is correct
7 Correct 7 ms 31064 KB Output is correct
8 Correct 7 ms 31068 KB Output is correct
9 Correct 8 ms 31064 KB Output is correct
10 Correct 8 ms 31068 KB Output is correct
11 Correct 7 ms 31068 KB Output is correct
12 Correct 8 ms 31068 KB Output is correct
13 Correct 7 ms 31068 KB Output is correct
14 Correct 8 ms 31096 KB Output is correct
15 Correct 7 ms 31068 KB Output is correct
16 Correct 7 ms 31096 KB Output is correct
17 Correct 7 ms 31068 KB Output is correct
18 Correct 7 ms 31068 KB Output is correct
19 Correct 7 ms 31068 KB Output is correct
20 Correct 7 ms 31056 KB Output is correct
21 Correct 8 ms 31064 KB Output is correct
22 Correct 7 ms 31068 KB Output is correct
23 Correct 7 ms 31064 KB Output is correct
24 Correct 7 ms 31068 KB Output is correct
25 Correct 10 ms 32348 KB Output is correct
26 Correct 15 ms 32264 KB Output is correct
27 Correct 12 ms 32092 KB Output is correct
28 Correct 16 ms 31836 KB Output is correct
29 Correct 10 ms 32348 KB Output is correct
30 Correct 9 ms 31532 KB Output is correct
31 Correct 14 ms 31652 KB Output is correct
32 Correct 11 ms 31380 KB Output is correct
33 Correct 9 ms 31324 KB Output is correct
34 Correct 14 ms 31568 KB Output is correct
35 Correct 11 ms 31388 KB Output is correct
36 Correct 10 ms 31288 KB Output is correct
37 Correct 10 ms 31580 KB Output is correct
38 Correct 10 ms 31380 KB Output is correct
39 Correct 562 ms 165448 KB Output is correct
40 Execution timed out 2051 ms 147716 KB Time limit exceeded
41 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 7 ms 31068 KB Output is correct
2 Correct 7 ms 31108 KB Output is correct
3 Correct 7 ms 31068 KB Output is correct
4 Correct 7 ms 31084 KB Output is correct
5 Correct 7 ms 31068 KB Output is correct
6 Correct 7 ms 31068 KB Output is correct
7 Correct 8 ms 31068 KB Output is correct
8 Correct 8 ms 31064 KB Output is correct
9 Correct 8 ms 31068 KB Output is correct
10 Correct 8 ms 31068 KB Output is correct
11 Correct 7 ms 31068 KB Output is correct
12 Correct 7 ms 31068 KB Output is correct
13 Correct 7 ms 31068 KB Output is correct
14 Correct 7 ms 31064 KB Output is correct
15 Correct 7 ms 31068 KB Output is correct
16 Correct 8 ms 31064 KB Output is correct
17 Correct 8 ms 31068 KB Output is correct
18 Correct 7 ms 31068 KB Output is correct
19 Correct 8 ms 31068 KB Output is correct
20 Correct 7 ms 31068 KB Output is correct
21 Correct 8 ms 31096 KB Output is correct
22 Correct 7 ms 31068 KB Output is correct
23 Correct 7 ms 31096 KB Output is correct
24 Correct 7 ms 31068 KB Output is correct
25 Correct 7 ms 31068 KB Output is correct
26 Correct 7 ms 31068 KB Output is correct
27 Correct 7 ms 31056 KB Output is correct
28 Correct 8 ms 31064 KB Output is correct
29 Correct 7 ms 31068 KB Output is correct
30 Correct 7 ms 31064 KB Output is correct
31 Correct 7 ms 31068 KB Output is correct
32 Correct 7 ms 31068 KB Output is correct
33 Correct 7 ms 31068 KB Output is correct
34 Correct 7 ms 31068 KB Output is correct
35 Correct 8 ms 31068 KB Output is correct
36 Correct 8 ms 31320 KB Output is correct
37 Correct 7 ms 31068 KB Output is correct
38 Execution timed out 2060 ms 121528 KB Time limit exceeded
39 Halted 0 ms 0 KB -