Submission #1068880

# Submission time Handle Problem Language Result Execution time Memory
1068880 2024-08-21T12:45:03 Z hashiryo Potatoes and fertilizers (LMIO19_bulves) C++17
100 / 100
510 ms 64848 KB
// #define _GLIBCXX_DEBUG
#include <bits/stdc++.h>
// clang-format off
std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,const __int128_t &u){if(!u)os<<"0";__int128_t tmp=u<0?(os<<"-",-u):u;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
std::ostream&operator<<(std::ostream&os,const __uint128_t &u){if(!u)os<<"0";__uint128_t tmp=u;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
#define checkpoint() (void(0))
#define debug(...) (void(0))
#define debugArray(x,n) (void(0))
#define debugMatrix(x,h,w) (void(0))
// clang-format on
#include <optional>
// clang-format off
template<class T>struct make_long{using type= T;};
template<>struct make_long<int8_t>{using type= int16_t;};
template<>struct make_long<uint8_t>{using type= uint16_t;};
template<>struct make_long<int16_t>{using type= int32_t;};
template<>struct make_long<uint16_t>{using type= uint32_t;};
template<>struct make_long<int32_t>{using type= int64_t;};
template<>struct make_long<uint32_t>{using type= uint64_t;};
template<>struct make_long<int64_t>{using type= __int128_t;};
template<>struct make_long<uint64_t>{using type= __uint128_t;};
template<>struct make_long<float>{using type= double;};
template<>struct make_long<double>{using type= long double;};
template<class T> using make_long_t= typename make_long<T>::type;
// clang-format on
template <class T, bool persistent= false, size_t NODE_SIZE= 1 << (20 + 2 * persistent)> class PiecewiseLinearConvex {
 using D= make_long_t<T>;
 struct Node {
  int ch[2]= {0, 0};
  T z= 0, x= 0, d= 0, a= 0;
  D s= 0;
  size_t sz= 0;
  friend std::ostream &operator<<(std::ostream &os, const Node &t) { return os << "{z:" << t.z << ",x:" << t.x << ",d:" << t.d << ",a:" << t.a << ",s:" << t.s << ",sz:" << t.sz << ",ch:(" << t.ch[0] << "," << t.ch[1] << ")}"; }
 };
 static inline size_t ni= 1;
 static inline Node *n= new Node[NODE_SIZE]{Node{}};
 static inline void info(int t, int d, std::stringstream &ss) {
  if (!t) return;
  info(n[t].ch[0], d + 1, ss);
  for (int i= 0; i < d; ++i) ss << "   ";
  ss << " ■ " << n[t] << '\n', info(n[t].ch[1], d + 1, ss);
 }
 static inline void dump_xs(int t, std::vector<T> &xs) {
  if (t) push(t), dump_xs(n[t].ch[0], xs), xs.push_back(n[t].x), dump_xs(n[t].ch[1], xs);
 }
 static inline void dump_slopes_l(int t, T ofs, std::vector<T> &as) {
  if (t) push(t), dump_slopes_l(n[t].ch[1], ofs, as), ofs+= n[n[t].ch[1]].a + n[t].d, as.push_back(-ofs), dump_slopes_l(n[t].ch[0], ofs, as);
 }
 static inline void dump_slopes_r(int t, T ofs, std::vector<T> &as) {
  if (t) push(t), dump_slopes_r(n[t].ch[0], ofs, as), ofs+= n[n[t].ch[0]].a + n[t].d, as.push_back(ofs), dump_slopes_r(n[t].ch[1], ofs, as);
 }
 static inline int create(T d, T x) { return n[ni].d= d, n[ni].x= x, n[ni].z= 0, ni++; }
 static inline bool lt(T a, T b) {
  if constexpr (std::is_floating_point_v<T>) return 1e-15 < b - a;
  else return a < b;
 }
 template <class Iter> static inline int build(Iter bg, Iter ed) {
  if (bg == ed) return 0;
  auto md= bg + (ed - bg) / 2;
  int t= create(md->first, md->second);
  return n[t].ch[0]= build(bg, md), n[t].ch[1]= build(md + 1, ed), update(t), t;
 }
 template <class Iter> static inline void dump(Iter itr, int t) {
  if (!t) return;
  push(t);
  size_t sz= n[n[t].ch[0]].sz;
  dump(itr, n[t].ch[0]), *(itr + sz)= {n[t].d, n[t].x}, dump(itr + sz + 1, n[t].ch[1]);
 }
 static inline void update(int t) {
  int l= n[t].ch[0], r= n[t].ch[1];
  n[t].sz= 1 + n[l].sz + n[r].sz, n[t].a= n[t].d + n[l].a + n[r].a, n[t].s= D(n[t].x) * n[t].d + n[l].s + n[r].s;
 }
 template <bool b= 1> static inline void prop(int &t, T v) {
  if constexpr (persistent && b) {
   if (!t) return;
   n[ni]= n[t], t= ni++;
  }
  n[t].z+= v, n[t].s+= D(v) * n[t].a, n[t].x+= v;
 }
 static inline void push(int t) {
  if (n[t].z != 0) prop(n[t].ch[0], n[t].z), prop(n[t].ch[1], n[t].z), n[t].z= 0;
 }
 template <bool r> static inline int join_(int t, int a, int b) {
  push(a);
  if constexpr (r) b= join<0>(b, t, n[a].ch[0]);
  else b= join<0>(n[a].ch[1], t, b);
  if constexpr (persistent) n[ni]= n[a], a= ni++;
  if (n[n[a].ch[r]].sz * 4 >= n[b].sz) return n[a].ch[!r]= b, update(a), a;
  return n[a].ch[!r]= n[b].ch[r], update(a), n[b].ch[r]= a, update(b), b;
 }
 template <bool b= 1> static inline int join(int l, int t, int r) {
  if constexpr (persistent && b) n[ni]= n[t], t= ni++;
  if (n[l].sz > n[r].sz * 4) return join_<0>(t, l, r);
  if (n[r].sz > n[l].sz * 4) return join_<1>(t, r, l);
  return n[t].ch[0]= l, n[t].ch[1]= r, update(t), t;
 }
 static inline std::array<int, 3> split(int t, T x) {
  if (!t) return {0, 0, 0};
  push(t);
  if (lt(n[t].x, x)) {
   auto [a, b, c]= split(n[t].ch[1], x);
   return {join(n[t].ch[0], t, a), b, c};
  } else if (lt(x, n[t].x)) {
   auto [a, b, c]= split(n[t].ch[0], x);
   return {a, b, join(c, t, n[t].ch[1])};
  }
  return {n[t].ch[0], t, n[t].ch[1]};
 }
 static inline int unite(int l, int r) {
  if (!l) return r;
  if (!r) return l;
  push(l);
  if constexpr (persistent) n[ni]= n[l], l= ni++;
  auto [a, b, c]= split(r, n[l].x);
  return n[l].d+= n[b].d, join<0>(unite(a, n[l].ch[0]), l, unite(n[l].ch[1], c));
 }
 static inline int insert(int t, T x, T d) {
  if (!t) return n[ni]= Node{{0, 0}, 0, x, d, d, D(x) * d, 1}, ni++;
  push(t);
  if constexpr (persistent) n[ni]= n[t], t= ni++;
  if (lt(x, n[t].x)) return join<0>(insert(n[t].ch[0], x, d), t, n[t].ch[1]);
  if (lt(n[t].x, x)) return join<0>(n[t].ch[0], t, insert(n[t].ch[1], x, d));
  return n[t].d+= d, update(t), t;
 }
 template <bool r> static inline std::pair<int, int> pop(int t) {
  if (push(t); !n[t].ch[r]) return {n[t].ch[!r], t};
  auto [a, s]= pop<r>(n[t].ch[r]);
  if constexpr (r) return {join(n[t].ch[!r], t, a), s};
  else return {join(a, t, n[t].ch[!r]), s};
 }
 template <bool g> static inline bool lgt(T a, T b) {
  if constexpr (g) return lt(b, a);
  else return lt(a, b);
 }
 template <bool r> static inline int cut(int t, T x) {
  if (!t) return t;
  if (push(t); lgt<r>(n[t].x, x)) return cut<r>(n[t].ch[!r], x);
  if (lgt<r>(x, n[t].x)) {
   if constexpr (r) return join(n[t].ch[0], t, cut<1>(n[t].ch[1], x));
   else return join(cut<0>(n[t].ch[0], x), t, n[t].ch[1]);
  }
  return n[t].ch[!r];
 }
 template <bool r> static inline D calc_y(int t, T x, T ol, D ou) {
  for (; t;) {
   if (push(t); lgt<r>(n[t].x, x)) t= n[t].ch[!r];
   else {
    ol+= n[n[t].ch[!r]].a, ou+= n[n[t].ch[!r]].s;
    if (!lgt<r>(x, n[t].x)) break;
    ol+= n[t].d, ou+= D(n[t].x) * n[t].d, t= n[t].ch[r];
   }
  }
  return D(x) * ol - ou;
 }
 template <bool r> static inline std::array<int, 3> split(int t, T p, T &ol, D &ou) {
  push(t);
  T s= ol + n[n[t].ch[!r]].a;
  if (lt(p, s)) {
   auto [a, b, c]= split<r>(n[t].ch[!r], p, ol, ou);
   if constexpr (r) return {a, b, join(c, t, n[t].ch[r])};
   else return {join(n[t].ch[r], t, a), b, c};
  }
  ol= s + n[t].d;
  if (lt(ol, p)) {
   ou+= n[n[t].ch[!r]].s + D(n[t].x) * n[t].d;
   auto [a, b, c]= split<r>(n[t].ch[r], p, ol, ou);
   if constexpr (r) return {join(n[t].ch[!r], t, a), b, c};
   else return {a, b, join(c, t, n[t].ch[!r])};
  }
  ou+= n[n[t].ch[!r]].s;
  return {n[t].ch[0], t, n[t].ch[1]};
 }
 template <bool l> static inline bool lte(T a, T b) {
  if constexpr (l) return lt(a, b);
  else return !lt(b, a);
 }
 template <bool l, bool r> static inline std::pair<int, int> split_cum(int t, T p, T &ol, D &ou) {
  push(t);
  T s= ol + n[n[t].ch[!r]].a;
  if (lte<l>(p, s)) {
   auto [c, b]= split_cum<l, r>(n[t].ch[!r], p, ol, ou);
   if constexpr (l) {
    if constexpr (r) return {join(c, t, n[t].ch[r]), b};
    else return {join(n[t].ch[r], t, c), b};
   } else return {c, b};
  }
  ol= s + n[t].d;
  if (lte<!l>(ol, p)) {
   ou+= n[n[t].ch[!r]].s + D(n[t].x) * n[t].d;
   auto [a, b]= split_cum<l, r>(n[t].ch[r], p, ol, ou);
   if constexpr (l) return {a, b};
   else {
    if constexpr (r) return {join(n[t].ch[!r], t, a), b};
    else return {join(a, t, n[t].ch[!r]), b};
   }
  }
  ou+= n[n[t].ch[!r]].s;
  return {n[t].ch[!r ^ l], t};
 }
 int mn, lr[2];
 bool bf[2];
 T o[2], rem, bx[2];
 D y;
 inline D calc_y(T x) {
  if (!mn) return 0;
  if (lt(x, n[mn].x)) return -calc_y<0>(lr[0], x, o[0], D(n[mn].x) * o[0]);
  if (lt(n[mn].x, x)) return calc_y<1>(lr[1], x, o[1], D(n[mn].x) * o[1]);
  return 0;
 }
 inline void slope_eval(bool neg) {
  T p= neg ? -rem : rem, ol= o[neg];
  if (p <= ol) o[neg]-= p, o[!neg]+= p, y+= D(n[mn].x) * rem;
  else {
   D ou= D(n[mn].x) * ol;
   auto [a, b, c]= neg ? split<1>(lr[neg], p, ol, ou) : split<0>(lr[neg], p, ol, ou);
   o[neg]= ol - p, ol-= n[b].d, ou+= D(n[b].x) * (o[!neg]= p - ol);
   if (neg) y-= ou, lr[!neg]= join(lr[!neg], mn, a), lr[neg]= c;
   else y+= ou, lr[!neg]= join(c, mn, lr[!neg]), lr[neg]= a;
   mn= b;
  }
  rem= 0;
 }
 template <bool l, bool neg> inline void slope_eval_cum() {
  T p= neg ? -rem : rem, ol= o[neg];
  if (lte<l>(p, ol)) o[neg]-= p, o[!neg]+= p, y+= D(n[mn].x) * rem;
  else {
   D ou= D(n[mn].x) * ol;
   auto [a, b]= split_cum<l, neg>(lr[neg], p, ol, ou);
   o[neg]= ol - p, ol-= n[b].d, ou+= D(n[b].x) * (o[!neg]= p - ol);
   if constexpr (l) lr[neg]= a;
   else {
    if constexpr (neg) lr[!neg]= join(lr[!neg], mn, a);
    else lr[!neg]= join(a, mn, lr[!neg]);
   }
   if constexpr (neg) y-= ou;
   else y+= ou;
   mn= b;
  }
  rem= 0;
 }
 template <bool r> void add_inf(T x0) {
  if (bf[r] && !lgt<r>(bx[r], x0)) return;
  if (assert(!bf[!r] || !lgt<r>(bx[!r], x0)), bf[r]= true, bx[r]= x0; !mn) return;
  if (lgt<r>(x0, n[mn].x)) return lr[r]= cut<r>(lr[r], x0), void();
  D q= n[lr[!r]].s + D(n[mn].x) * o[!r];
  T v= o[!r] + n[lr[!r]].a;
  lr[!r]= cut<r>(lr[!r], x0);
  if (!r) y-= q, rem+= v;
  else y+= q, rem-= v;
  if (lr[!r]) std::tie(lr[r], mn)= pop<!r>(lr[!r]), lr[!r]= 0;
  else mn= lr[r]= 0;
  o[r]= n[mn].d, o[!r]= 0;
 }
 inline void prop(T x) {
  if constexpr (persistent) mn= create(n[mn].d, n[mn].x);
  n[mn].x+= x;
 }
public:
 // f(x) := 0
 PiecewiseLinearConvex(): mn(0), lr{0, 0}, bf{0, 0}, o{0, 0}, rem(0), bx{0, 0}, y(0) {}
 //  f(x) := sum max(0, a(x-x0))
 PiecewiseLinearConvex(const std::vector<std::pair<T, T>> &ramps): PiecewiseLinearConvex() {
  int m= ramps.size();
  if (!m) return;
  std::vector<std::pair<T, T>> w(m);
  int s= 0, t= 0;
  for (auto [d, x]: ramps) {
   if (lt(d, 0)) y-= D(d) * x, rem+= d, d= -d;
   if (!lt(0, d)) continue;
   w[s++]= {d, x};
  }
  std::sort(w.begin(), w.begin() + s, [](auto a, auto b) { return a.second < b.second; });
  for (int i= 0; i < s; ++i) {
   if (t && !lt(w[t - 1].second, w[i].second) && !lt(w[i].second, w[t - 1].second)) w[t - 1].first+= w[i].first;
   else w[t++]= w[i];
  }
  mn= create(w[0].first, w[0].second), o[1]= n[mn].d, lr[1]= build(w.begin() + 1, w.begin() + t);
 }
 std::string info() {
  std::stringstream ss;
  if (ss << "\n rem:" << rem << ", y:" << y << ", mn:" << mn << ", lr:{" << lr[0] << ", " << lr[1] << "}\n bf[0]:" << bf[0] << ", bf[1]:" << bf[1] << ", bx[0]:" << bx[0] << ", bx[1]:" << bx[1] << "\n " << "o[0]:" << o[0] << ", o[1]:" << o[1] << "\n"; mn) {
   if (lr[0]) info(lr[0], 1, ss);
   ss << " ■ " << n[mn] << '\n';
   if (lr[1]) info(lr[1], 1, ss);
  }
  return ss.str();
 }
 template <class... Args> static inline void rebuild(Args &...plc) {
  static_assert(std::conjunction_v<std::is_same<PiecewiseLinearConvex, Args>...>);
  constexpr size_t m= sizeof...(Args);
  std::array<std::vector<std::pair<T, T>>, m> ls, rs;
  std::array<std::pair<T, T>, m> mns;
  int i= 0;
  (void)(int[]){(mns[i]= {n[plc.mn].d, n[plc.mn].x}, ls[i].resize(n[plc.lr[0]].sz), rs[i].resize(n[plc.lr[1]].sz), dump(ls[i].begin(), plc.lr[0]), dump(rs[i].begin(), plc.lr[1]), ++i)...};
  ni= 1, i= 0;
  (void)(int[]){((plc.mn ? (plc.mn= create(mns[i].first, mns[i].second)) : 0), plc.lr[0]= build(ls[i].begin(), ls[i].end()), plc.lr[1]= build(rs[i].begin(), rs[i].end()), ++i)...};
 }
 static inline void rebuild(std::vector<PiecewiseLinearConvex> &plcs) {
  size_t m= plcs.size();
  std::vector<std::vector<std::pair<T, T>>> ls(m), rs(m);
  std::vector<std::pair<T, T>> mns(m);
  for (int i= m; i--;) mns[i]= {n[plcs[i].mn].d, n[plcs[i].mn].x}, ls[i].resize(n[plcs[i].lr[0]].sz), rs[i].resize(n[plcs[i].lr[1]].sz), dump(ls[i].begin(), plcs[i].lr[0]), dump(rs[i].begin(), plcs[i].lr[1]);
  ni= 1;
  for (int i= m; i--;) (plcs[i].mn ? (plcs[i].mn= create(mns[i].first, mns[i].second)) : 0), plcs[i].lr[0]= build(ls[i].begin(), ls[i].end()), plcs[i].lr[1]= build(rs[i].begin(), rs[i].end());
 }
 static void reset() { ni= 1; }
 static bool pool_empty() {
  if constexpr (persistent) return ni >= NODE_SIZE * 0.8;
  else return ni + 1000 >= NODE_SIZE;
 }
 // f(x) += c
 void add_const(D c) { y+= c; }
 // f(x) += ax, /
 void add_linear(T a) { rem+= a; }
 //  f(x) += max(a(x-x0),b(x-x0)), (a < b)
 void add_max(T a, T b, T x0) {
  assert(lt(a, b));
  if (bf[0] && x0 <= bx[0]) y-= D(b) * x0, rem+= b;
  else if (bf[1] && bx[1] <= x0) y-= D(a) * x0, rem+= a;
  else if (T c= b - a; mn) {
   if (lt(n[mn].x, x0)) lr[1]= insert(lr[1], x0, c), y-= D(a) * x0, rem+= a;
   else if (lt(x0, n[mn].x)) lr[0]= insert(lr[0], x0, c), y-= D(b) * x0, rem+= b;
   else {
    if constexpr (persistent) mn= create(n[mn].d, n[mn].x);
    n[mn].d+= c, o[1]+= c, y-= D(a) * x0, rem+= a;
   }
  } else mn= create(c, x0), y-= D(a) * x0, rem+= a, o[0]= 0, o[1]= c;
 }
 // f(x) +=  max(0, a(x-x0))
 void add_ramp(T a, T x0) {
  if (lt(0, a)) add_max(0, a, x0);
  else if (lt(a, 0)) add_max(a, 0, x0);
 }
 // f(x) += a|x-x0|, \/
 void add_abs(T a, T x0) {
  if (assert(!lt(a, 0)); lt(0, a)) add_max(-a, a, x0);
 }
 // right=false : f(x) +=  inf  (x < x_0), right=true: f(x) += inf  (x_0 < x)
 void add_inf(bool right= false, T x0= 0) { return right ? add_inf<1>(x0) : add_inf<0>(x0); }
 // f(x) <- f(x-x0)
 void shift(T x0) {
  if (bx[0]+= x0, bx[1]+= x0, y-= D(rem) * x0; mn) prop(x0), prop(lr[0], x0), prop(lr[1], x0);
 }
 // rev=false: f(x) <- min_{y<=x} f(y), rev=true : f(x) <- min_{x<=y} f(y)
 void chmin_cum(bool rev= false) {
  if (bf[0] && bf[1] && !lt(bx[0], bx[1])) y+= D(rem) * bx[0], rem= 0;
  else if (bool r= lt(rem, 0); r || lt(0, rem)) {
   T u= (r ? -rem : rem) - o[r] - n[lr[r]].a;
   if (!lt(u, 0)) {
    if (r ^ rev) {
     if (lt(0, u) && bf[r]) {
      D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
      if (r ? y-= q : y+= q; mn) lr[!r]= join(lr[0], mn, lr[1]);
      o[!r]= u, rem= 0, mn= create(u, bx[r]), lr[!rev]= 0, o[!rev]= 0;
     }
    } else {
     assert(bf[r]);
     D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
     (r ? y-= q : y+= q), rem= 0, mn= lr[0]= lr[1]= 0, o[0]= o[1]= 0;
    }
    bf[!rev]= false;
    return;
   }
   if ((r ^ rev)) r ? slope_eval_cum<0, 1>() : slope_eval_cum<0, 0>();
   else r ? slope_eval_cum<1, 1>() : slope_eval_cum<1, 0>();
   if constexpr (persistent) mn= create(o[rev], n[mn].x);
   else n[mn].d= o[rev];
  } else if (mn) {
   if (!lt(0, o[rev])) {
    if (lr[rev]) std::tie(lr[rev], mn)= rev ? pop<0>(lr[rev]) : pop<1>(lr[rev]), o[rev]= n[mn].d;
    else mn= 0;
   } else {
    if constexpr (persistent) mn= create(o[rev], n[mn].x);
    else n[mn].d= o[rev];
   }
  }
  bf[!rev]= false, lr[!rev]= 0, o[!rev]= 0;
 }
 //  f(x) <- min_{lb<=y<=ub} f(x-y). (lb <= ub), \_/ -> \__/
 void chmin_slide_win(T lb, T ub) {
  assert(lb <= ub);
  if (bf[0] && bf[1] && !lt(bx[0], bx[1])) y+= D(rem) * bx[0], rem= 0;
  else {
   if (bool r= lt(rem, 0); r || lt(0, rem)) {
    T u= (r ? -rem : rem) - o[r] - n[lr[r]].a;
    if (lt(0, u)) {
     T b[2]= {lb, ub};
     if (bf[r]) {
      D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
      if (r ? y-= q : y+= q; mn) lr[!r]= join(lr[0], mn, lr[1]), prop<0>(lr[!r], b[!r]);
      lr[r]= 0, rem= 0, o[!r]= u, o[r]= 0, mn= create(u, bx[r] + b[!r]);
     } else {
      y-= D(rem) * b[!r];
      if (mn) prop(b[!r]), prop(lr[0], b[!r]), prop(lr[1], b[!r]);
     }
     bx[0]+= lb, bx[1]+= ub;
     return;
    }
    slope_eval(r);
   }
   if (mn) {
    if (!lt(0, o[0])) prop(ub);
    else if (!lt(0, o[1])) prop(lb);
    else lr[1]= join<0>(0, create(o[1], n[mn].x), lr[1]), prop(lb), n[mn].d= o[0], o[1]= 0;
    prop(lr[0], lb), prop(lr[1], ub);
   }
  }
  bx[0]+= lb, bx[1]+= ub;
 }
 std::optional<D> operator()(T x) {
  if (bf[0] && x < bx[0]) return std::nullopt;
  if (bf[1] && bx[1] < x) return std::nullopt;
  return calc_y(x) + D(rem) * x + y;
 }
 std::optional<D> min() {
  bool r= lt(rem, 0);
  if (!r && !lt(0, rem)) return y;
  T u= (r ? -rem : rem) - o[r] - n[lr[r]].a;
  if (lt(0, u)) {
   if (!bf[r]) return std::nullopt;
   D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
   return r ? y - q : y + q;
  }
  return slope_eval(r), y;
 }
 std::array<T, 2> argmin() {
  if (bool r= lt(rem, 0); r || lt(0, rem)) {
   if (lt(o[r] + n[lr[r]].a, (r ? -rem : rem))) {
    if (!bf[r]) return {1, 0};  // no solution
    return {bx[r], bx[r]};
   }
   slope_eval(r);
  }
  std::array<T, 2> ret= {bx[0], bx[1]};
  int t= mn;
  if (!t) return ret;
  bool r= lt(0, o[0]);
  if (r && lt(0, o[1])) ret[0]= ret[1]= n[t].x;
  else if (ret[!r]= n[t].x, t= lr[r]; t) {
   for (; push(t), n[t].ch[!r];) t= n[t].ch[!r];
   ret[r]= n[t].x;
  } else if (!bf[r]) return {1, 0};  // no solution
  return ret;
 }
 size_t size() { return n[lr[0]].sz + n[lr[1]].sz + !!mn; }
 PiecewiseLinearConvex &operator+=(const PiecewiseLinearConvex &g) { return *this= *this + g; }
 PiecewiseLinearConvex operator+(PiecewiseLinearConvex g) const {
  PiecewiseLinearConvex ret= *this;
  if (g.bf[0]) ret.add_inf(false, g.bx[0]);
  if (g.bf[1]) ret.add_inf(true, g.bx[1]);
  if (bf[0]) g.add_inf(false, bx[0]);
  if (bf[1]) g.add_inf(true, bx[1]);
  ret.y+= g.y, ret.rem+= g.rem;
  if (!g.mn) return ret;
  if (!ret.mn) return ret.mn= g.mn, ret.lr[0]= g.lr[0], ret.lr[1]= g.lr[1], ret.o[0]= g.o[0], ret.o[1]= g.o[1], ret;
  ret.y+= n[ret.lr[0]].s + D(n[ret.mn].x) * ret.o[0] + n[g.lr[0]].s + D(n[g.mn].x) * g.o[0], ret.rem-= ret.o[0] + n[ret.lr[0]].a + g.o[0] + n[g.lr[0]].a;
  int t= unite(join(ret.lr[0], ret.mn, ret.lr[1]), join(g.lr[0], g.mn, g.lr[1]));
  return std::tie(ret.lr[1], ret.mn)= pop<0>(t), ret.lr[0]= 0, ret.o[0]= 0, ret.o[1]= n[ret.mn].d, ret;
 }
 std::vector<T> dump_xs() {
  std::vector<T> xs;
  if (bf[0]) xs.push_back(bx[0]);
  dump_xs(lr[0], xs);
  if (mn) xs.push_back(n[mn].x);
  dump_xs(lr[1], xs);
  if (bf[1]) xs.push_back(bx[1]);
  return xs;
 }
 std::vector<std::pair<T, D>> dump_xys() {
  auto xs= dump_xs();
  std::vector<std::pair<T, D>> xys(xs.size());
  for (int i= xs.size(); i--;) xys[i]= {xs[i], operator()(xs[i])};
  return xys;
 }
 std::vector<T> dump_slopes() {
  std::vector<T> as;
  if (mn) as.push_back(-o[0]), dump_slopes_l(lr[0], o[0], as), std::reverse(as.begin(), as.end()), as.push_back(o[1]), dump_slopes_r(lr[1], o[1], as);
  else as.push_back(0);
  for (auto &a: as) a+= rem;
  return as;
 }
};
using namespace std;
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int N;
 cin >> N;
 PiecewiseLinearConvex<long long> f;
 for (int i= 0; i < N; ++i) {
  int a, b;
  cin >> a >> b;
  f.add_inf();
  f.add_linear(a - b);
  f.chmin_slide_win(-1, 1);
 }
 cout << -f.min().value() << '\n';
 return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 14 ms 57692 KB Output is correct
2 Correct 9 ms 57936 KB Output is correct
3 Correct 9 ms 57868 KB Output is correct
4 Correct 32 ms 58072 KB Output is correct
5 Correct 61 ms 58396 KB Output is correct
6 Correct 136 ms 61232 KB Output is correct
7 Correct 121 ms 64072 KB Output is correct
8 Correct 347 ms 62876 KB Output is correct
9 Correct 166 ms 61852 KB Output is correct
10 Correct 54 ms 59728 KB Output is correct
11 Correct 57 ms 59820 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 57692 KB Output is correct
2 Correct 9 ms 57936 KB Output is correct
3 Correct 9 ms 57868 KB Output is correct
4 Correct 32 ms 58072 KB Output is correct
5 Correct 61 ms 58396 KB Output is correct
6 Correct 136 ms 61232 KB Output is correct
7 Correct 121 ms 64072 KB Output is correct
8 Correct 347 ms 62876 KB Output is correct
9 Correct 166 ms 61852 KB Output is correct
10 Correct 54 ms 59728 KB Output is correct
11 Correct 57 ms 59820 KB Output is correct
12 Correct 76 ms 59556 KB Output is correct
13 Correct 203 ms 61548 KB Output is correct
14 Correct 107 ms 64084 KB Output is correct
15 Correct 464 ms 62544 KB Output is correct
16 Correct 412 ms 61920 KB Output is correct
17 Correct 58 ms 59728 KB Output is correct
18 Correct 9 ms 57928 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 57692 KB Output is correct
2 Correct 9 ms 57936 KB Output is correct
3 Correct 9 ms 57928 KB Output is correct
4 Correct 11 ms 57692 KB Output is correct
5 Correct 18 ms 57692 KB Output is correct
6 Correct 18 ms 57840 KB Output is correct
7 Correct 18 ms 57944 KB Output is correct
8 Correct 18 ms 57692 KB Output is correct
9 Correct 21 ms 57944 KB Output is correct
10 Correct 13 ms 57692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 57692 KB Output is correct
2 Correct 9 ms 57936 KB Output is correct
3 Correct 9 ms 57868 KB Output is correct
4 Correct 11 ms 57692 KB Output is correct
5 Correct 18 ms 57692 KB Output is correct
6 Correct 18 ms 57840 KB Output is correct
7 Correct 18 ms 57944 KB Output is correct
8 Correct 18 ms 57692 KB Output is correct
9 Correct 21 ms 57944 KB Output is correct
10 Correct 13 ms 57692 KB Output is correct
11 Correct 9 ms 57928 KB Output is correct
12 Correct 15 ms 57944 KB Output is correct
13 Correct 15 ms 58200 KB Output is correct
14 Correct 14 ms 57948 KB Output is correct
15 Correct 11 ms 57948 KB Output is correct
16 Correct 11 ms 57856 KB Output is correct
17 Correct 12 ms 57948 KB Output is correct
18 Correct 14 ms 57948 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 57692 KB Output is correct
2 Correct 9 ms 57936 KB Output is correct
3 Correct 9 ms 57868 KB Output is correct
4 Correct 11 ms 57692 KB Output is correct
5 Correct 18 ms 57692 KB Output is correct
6 Correct 18 ms 57840 KB Output is correct
7 Correct 18 ms 57944 KB Output is correct
8 Correct 18 ms 57692 KB Output is correct
9 Correct 21 ms 57944 KB Output is correct
10 Correct 13 ms 57692 KB Output is correct
11 Correct 32 ms 58072 KB Output is correct
12 Correct 61 ms 58396 KB Output is correct
13 Correct 136 ms 61232 KB Output is correct
14 Correct 121 ms 64072 KB Output is correct
15 Correct 347 ms 62876 KB Output is correct
16 Correct 166 ms 61852 KB Output is correct
17 Correct 54 ms 59728 KB Output is correct
18 Correct 57 ms 59820 KB Output is correct
19 Correct 76 ms 59556 KB Output is correct
20 Correct 203 ms 61548 KB Output is correct
21 Correct 107 ms 64084 KB Output is correct
22 Correct 464 ms 62544 KB Output is correct
23 Correct 412 ms 61920 KB Output is correct
24 Correct 58 ms 59728 KB Output is correct
25 Correct 15 ms 57944 KB Output is correct
26 Correct 15 ms 58200 KB Output is correct
27 Correct 14 ms 57948 KB Output is correct
28 Correct 11 ms 57948 KB Output is correct
29 Correct 11 ms 57856 KB Output is correct
30 Correct 12 ms 57948 KB Output is correct
31 Correct 14 ms 57948 KB Output is correct
32 Correct 9 ms 57928 KB Output is correct
33 Correct 114 ms 59476 KB Output is correct
34 Correct 256 ms 61856 KB Output is correct
35 Correct 445 ms 64628 KB Output is correct
36 Correct 510 ms 62248 KB Output is correct
37 Correct 352 ms 62772 KB Output is correct
38 Correct 386 ms 64848 KB Output is correct
39 Correct 230 ms 60588 KB Output is correct
40 Correct 230 ms 60580 KB Output is correct
41 Correct 61 ms 59676 KB Output is correct
42 Correct 81 ms 59732 KB Output is correct
43 Correct 58 ms 59732 KB Output is correct
44 Correct 84 ms 59692 KB Output is correct
45 Correct 406 ms 64412 KB Output is correct
46 Correct 95 ms 59988 KB Output is correct
47 Correct 283 ms 60496 KB Output is correct