Submission #1068851

# Submission time Handle Problem Language Result Execution time Memory
1068851 2024-08-21T12:36:41 Z hashiryo Safety (NOI18_safety) C++17
100 / 100
375 ms 59816 KB
// #define _GLIBCXX_DEBUG
#include <bits/stdc++.h>
// clang-format off
std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,const __int128_t &u){if(!u)os<<"0";__int128_t tmp=u<0?(os<<"-",-u):u;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
std::ostream&operator<<(std::ostream&os,const __uint128_t &u){if(!u)os<<"0";__uint128_t tmp=u;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
#define checkpoint() (void(0))
#define debug(...) (void(0))
#define debugArray(x,n) (void(0))
#define debugMatrix(x,h,w) (void(0))
// clang-format on
#include <optional>
// clang-format off
template<class T>struct make_long{using type= T;};
template<>struct make_long<int8_t>{using type= int16_t;};
template<>struct make_long<uint8_t>{using type= uint16_t;};
template<>struct make_long<int16_t>{using type= int32_t;};
template<>struct make_long<uint16_t>{using type= uint32_t;};
template<>struct make_long<int32_t>{using type= int64_t;};
template<>struct make_long<uint32_t>{using type= uint64_t;};
template<>struct make_long<int64_t>{using type= __int128_t;};
template<>struct make_long<uint64_t>{using type= __uint128_t;};
template<>struct make_long<float>{using type= double;};
template<>struct make_long<double>{using type= long double;};
template<class T> using make_long_t= typename make_long<T>::type;
// clang-format on
template <class T, bool persistent= false, size_t NODE_SIZE= 1 << (20 + 2 * persistent)> class PiecewiseLinearConvex {
 using D= make_long_t<T>;
 struct Node {
  int ch[2]= {0, 0};
  T z= 0, x= 0, d= 0, a= 0;
  D s= 0;
  size_t sz= 0;
  friend std::ostream &operator<<(std::ostream &os, const Node &t) { return os << "{z:" << t.z << ",x:" << t.x << ",d:" << t.d << ",a:" << t.a << ",s:" << t.s << ",sz:" << t.sz << ",ch:(" << t.ch[0] << "," << t.ch[1] << ")}"; }
 };
 static inline size_t ni= 1;
 static inline Node *n= new Node[NODE_SIZE]{Node{}};
 static inline void info(int t, int d, std::stringstream &ss) {
  if (!t) return;
  info(n[t].ch[0], d + 1, ss);
  for (int i= 0; i < d; ++i) ss << "   ";
  ss << " ■ " << n[t] << '\n', info(n[t].ch[1], d + 1, ss);
 }
 static inline void dump_xs(int t, std::vector<T> &xs) {
  if (t) push(t), dump_xs(n[t].ch[0], xs), xs.push_back(n[t].x), dump_xs(n[t].ch[1], xs);
 }
 static inline void dump_slopes_l(int t, T ofs, std::vector<T> &as) {
  if (t) push(t), dump_slopes_l(n[t].ch[1], ofs, as), ofs+= n[n[t].ch[1]].a + n[t].d, as.push_back(-ofs), dump_slopes_l(n[t].ch[0], ofs, as);
 }
 static inline void dump_slopes_r(int t, T ofs, std::vector<T> &as) {
  if (t) push(t), dump_slopes_r(n[t].ch[0], ofs, as), ofs+= n[n[t].ch[0]].a + n[t].d, as.push_back(ofs), dump_slopes_r(n[t].ch[1], ofs, as);
 }
 static inline int create(T d, T x) { return n[ni].d= d, n[ni].x= x, n[ni].z= 0, ni++; }
 static inline bool lt(T a, T b) {
  if constexpr (std::is_floating_point_v<T>) return 1e-15 < b - a;
  else return a < b;
 }
 template <class Iter> static inline int build(Iter bg, Iter ed) {
  if (bg == ed) return 0;
  auto md= bg + (ed - bg) / 2;
  int t= create(md->first, md->second);
  return n[t].ch[0]= build(bg, md), n[t].ch[1]= build(md + 1, ed), update(t), t;
 }
 template <class Iter> static inline void dump(Iter itr, int t) {
  if (!t) return;
  push(t);
  size_t sz= n[n[t].ch[0]].sz;
  dump(itr, n[t].ch[0]), *(itr + sz)= {n[t].d, n[t].x}, dump(itr + sz + 1, n[t].ch[1]);
 }
 static inline void update(int t) {
  int l= n[t].ch[0], r= n[t].ch[1];
  n[t].sz= 1 + n[l].sz + n[r].sz, n[t].a= n[t].d + n[l].a + n[r].a, n[t].s= D(n[t].x) * n[t].d + n[l].s + n[r].s;
 }
 template <bool b= 1> static inline void prop(int &t, T v) {
  if constexpr (persistent && b) {
   if (!t) return;
   n[ni]= n[t], t= ni++;
  }
  n[t].z+= v, n[t].s+= D(v) * n[t].a, n[t].x+= v;
 }
 static inline void push(int t) {
  if (n[t].z != 0) prop(n[t].ch[0], n[t].z), prop(n[t].ch[1], n[t].z), n[t].z= 0;
 }
 template <bool r> static inline int join_(int t, int a, int b) {
  push(a);
  if constexpr (r) b= join<0>(b, t, n[a].ch[0]);
  else b= join<0>(n[a].ch[1], t, b);
  if constexpr (persistent) n[ni]= n[a], a= ni++;
  if (n[n[a].ch[r]].sz * 4 >= n[b].sz) return n[a].ch[!r]= b, update(a), a;
  return n[a].ch[!r]= n[b].ch[r], update(a), n[b].ch[r]= a, update(b), b;
 }
 template <bool b= 1> static inline int join(int l, int t, int r) {
  if constexpr (persistent && b) n[ni]= n[t], t= ni++;
  if (n[l].sz > n[r].sz * 4) return join_<0>(t, l, r);
  if (n[r].sz > n[l].sz * 4) return join_<1>(t, r, l);
  return n[t].ch[0]= l, n[t].ch[1]= r, update(t), t;
 }
 static inline std::array<int, 3> split(int t, T x) {
  if (!t) return {0, 0, 0};
  push(t);
  if (lt(n[t].x, x)) {
   auto [a, b, c]= split(n[t].ch[1], x);
   return {join(n[t].ch[0], t, a), b, c};
  } else if (lt(x, n[t].x)) {
   auto [a, b, c]= split(n[t].ch[0], x);
   return {a, b, join(c, t, n[t].ch[1])};
  }
  return {n[t].ch[0], t, n[t].ch[1]};
 }
 static inline int unite(int l, int r) {
  if (!l) return r;
  if (!r) return l;
  push(l);
  if constexpr (persistent) n[ni]= n[l], l= ni++;
  auto [a, b, c]= split(r, n[l].x);
  return n[l].d+= n[b].d, join<0>(unite(a, n[l].ch[0]), l, unite(n[l].ch[1], c));
 }
 static inline int insert(int t, T x, T d) {
  if (!t) return n[ni]= Node{{0, 0}, 0, x, d, d, D(x) * d, 1}, ni++;
  push(t);
  if constexpr (persistent) n[ni]= n[t], t= ni++;
  if (lt(x, n[t].x)) return join<0>(insert(n[t].ch[0], x, d), t, n[t].ch[1]);
  if (lt(n[t].x, x)) return join<0>(n[t].ch[0], t, insert(n[t].ch[1], x, d));
  return n[t].d+= d, update(t), t;
 }
 template <bool r> static inline std::pair<int, int> pop(int t) {
  if (push(t); !n[t].ch[r]) return {n[t].ch[!r], t};
  auto [a, s]= pop<r>(n[t].ch[r]);
  if constexpr (r) return {join(n[t].ch[!r], t, a), s};
  else return {join(a, t, n[t].ch[!r]), s};
 }
 template <bool g> static inline bool lgt(T a, T b) {
  if constexpr (g) return lt(b, a);
  else return lt(a, b);
 }
 template <bool r> static inline int cut(int t, T x) {
  if (!t) return t;
  if (push(t); lgt<r>(n[t].x, x)) return cut<r>(n[t].ch[!r], x);
  if (lgt<r>(x, n[t].x)) {
   if constexpr (r) return join(n[t].ch[0], t, cut<1>(n[t].ch[1], x));
   else return join(cut<0>(n[t].ch[0], x), t, n[t].ch[1]);
  }
  return n[t].ch[!r];
 }
 template <bool r> static inline D calc_y(int t, T x, T ol, D ou) {
  for (; t;) {
   if (push(t); lgt<r>(n[t].x, x)) t= n[t].ch[!r];
   else {
    ol+= n[n[t].ch[!r]].a, ou+= n[n[t].ch[!r]].s;
    if (!lgt<r>(x, n[t].x)) break;
    ol+= n[t].d, ou+= D(n[t].x) * n[t].d, t= n[t].ch[r];
   }
  }
  return D(x) * ol - ou;
 }
 template <bool r> static inline std::array<int, 3> split(int t, T p, T &ol, D &ou) {
  push(t);
  T s= ol + n[n[t].ch[!r]].a;
  if (lt(p, s)) {
   auto [a, b, c]= split<r>(n[t].ch[!r], p, ol, ou);
   if constexpr (r) return {a, b, join(c, t, n[t].ch[r])};
   else return {join(n[t].ch[r], t, a), b, c};
  }
  ol= s + n[t].d;
  if (lt(ol, p)) {
   ou+= n[n[t].ch[!r]].s + D(n[t].x) * n[t].d;
   auto [a, b, c]= split<r>(n[t].ch[r], p, ol, ou);
   if constexpr (r) return {join(n[t].ch[!r], t, a), b, c};
   else return {a, b, join(c, t, n[t].ch[!r])};
  }
  ou+= n[n[t].ch[!r]].s;
  return {n[t].ch[0], t, n[t].ch[1]};
 }
 template <bool l> static inline bool lte(T a, T b) {
  if constexpr (l) return lt(a, b);
  else return !lt(b, a);
 }
 template <bool l, bool r> static inline std::pair<int, int> split_cum(int t, T p, T &ol, D &ou) {
  push(t);
  T s= ol + n[n[t].ch[!r]].a;
  if (lte<l>(p, s)) {
   auto [c, b]= split_cum<l, r>(n[t].ch[!r], p, ol, ou);
   if constexpr (l) {
    if constexpr (r) return {join(c, t, n[t].ch[r]), b};
    else return {join(n[t].ch[r], t, c), b};
   } else return {c, b};
  }
  ol= s + n[t].d;
  if (lte<!l>(ol, p)) {
   ou+= n[n[t].ch[!r]].s + D(n[t].x) * n[t].d;
   auto [a, b]= split_cum<l, r>(n[t].ch[r], p, ol, ou);
   if constexpr (l) return {a, b};
   else {
    if constexpr (r) return {join(n[t].ch[!r], t, a), b};
    else return {join(a, t, n[t].ch[!r]), b};
   }
  }
  ou+= n[n[t].ch[!r]].s;
  return {n[t].ch[!r ^ l], t};
 }
 int mn, lr[2];
 bool bf[2];
 T o[2], rem, bx[2];
 D y;
 inline D calc_y(T x) {
  if (!mn) return 0;
  if (lt(x, n[mn].x)) return -calc_y<0>(lr[0], x, o[0], D(n[mn].x) * o[0]);
  if (lt(n[mn].x, x)) return calc_y<1>(lr[1], x, o[1], D(n[mn].x) * o[1]);
  return 0;
 }
 inline void slope_eval(bool neg) {
  T p= neg ? -rem : rem, ol= o[neg];
  if (p <= ol) o[neg]-= p, o[!neg]+= p, y+= D(n[mn].x) * rem;
  else {
   D ou= D(n[mn].x) * ol;
   auto [a, b, c]= neg ? split<1>(lr[neg], p, ol, ou) : split<0>(lr[neg], p, ol, ou);
   o[neg]= ol - p, ol-= n[b].d, ou+= D(n[b].x) * (o[!neg]= p - ol);
   if (neg) y-= ou, lr[!neg]= join(lr[!neg], mn, a), lr[neg]= c;
   else y+= ou, lr[!neg]= join(c, mn, lr[!neg]), lr[neg]= a;
   mn= b;
  }
  rem= 0;
 }
 template <bool l, bool neg> inline void slope_eval_cum() {
  T p= neg ? -rem : rem, ol= o[neg];
  if (lte<l>(p, ol)) o[neg]-= p, o[!neg]+= p, y+= D(n[mn].x) * rem;
  else {
   D ou= D(n[mn].x) * ol;
   auto [a, b]= split_cum<l, neg>(lr[neg], p, ol, ou);
   o[neg]= ol - p, ol-= n[b].d, ou+= D(n[b].x) * (o[!neg]= p - ol);
   if constexpr (l) lr[neg]= a;
   else {
    if constexpr (neg) lr[!neg]= join(lr[!neg], mn, a);
    else lr[!neg]= join(a, mn, lr[!neg]);
   }
   if constexpr (neg) y-= ou;
   else y+= ou;
   mn= b;
  }
  rem= 0;
 }
 template <bool r> void add_inf(T x0) {
  if (bf[r] && !lgt<r>(bx[r], x0)) return;
  if (assert(!bf[!r] || !lgt<r>(bx[!r], x0)), bf[r]= true, bx[r]= x0; !mn) return;
  if (lgt<r>(x0, n[mn].x)) return lr[r]= cut<r>(lr[r], x0), void();
  D q= n[lr[!r]].s + D(n[mn].x) * o[!r];
  T v= o[!r] + n[lr[!r]].a;
  lr[!r]= cut<r>(lr[!r], x0);
  if (!r) y-= q, rem+= v;
  else y+= q, rem-= v;
  if (lr[!r]) std::tie(lr[r], mn)= pop<!r>(lr[!r]), lr[!r]= 0;
  else mn= lr[r]= 0;
  o[r]= n[mn].d, o[!r]= 0;
 }
 inline void prop(T x) {
  if constexpr (persistent) mn= create(n[mn].d, n[mn].x);
  n[mn].x+= x;
 }
public:
 // f(x) := 0
 PiecewiseLinearConvex(): mn(0), lr{0, 0}, bf{0, 0}, o{0, 0}, rem(0), bx{0, 0}, y(0) {}
 //  f(x) := sum max(0, a(x-x0))
 PiecewiseLinearConvex(const std::vector<std::pair<T, T>> &ramps): PiecewiseLinearConvex() {
  int m= ramps.size();
  if (!m) return;
  std::vector<std::pair<T, T>> w(m);
  int s= 0, t= 0;
  for (auto [d, x]: ramps) {
   if (lt(d, 0)) y-= D(d) * x, rem+= d, d= -d;
   if (!lt(0, d)) continue;
   w[s++]= {d, x};
  }
  std::sort(w.begin(), w.begin() + s, [](auto a, auto b) { return a.second < b.second; });
  for (int i= 0; i < s; ++i) {
   if (t && !lt(w[t - 1].second, w[i].second) && !lt(w[i].second, w[t - 1].second)) w[t - 1].first+= w[i].first;
   else w[t++]= w[i];
  }
  mn= create(w[0].first, w[0].second), o[1]= n[mn].d, lr[1]= build(w.begin() + 1, w.begin() + t);
 }
 std::string info() {
  std::stringstream ss;
  if (ss << "\n rem:" << rem << ", y:" << y << ", mn:" << mn << ", lr:{" << lr[0] << ", " << lr[1] << "}\n bf[0]:" << bf[0] << ", bf[1]:" << bf[1] << ", bx[0]:" << bx[0] << ", bx[1]:" << bx[1] << "\n " << "o[0]:" << o[0] << ", o[1]:" << o[1] << "\n"; mn) {
   if (lr[0]) info(lr[0], 1, ss);
   ss << " ■ " << n[mn] << '\n';
   if (lr[1]) info(lr[1], 1, ss);
  }
  return ss.str();
 }
 template <class... Args> static inline void rebuild(Args &...plc) {
  static_assert(std::conjunction_v<std::is_same<PiecewiseLinearConvex, Args>...>);
  constexpr size_t m= sizeof...(Args);
  std::array<std::vector<std::pair<T, T>>, m> ls, rs;
  std::array<std::pair<T, T>, m> mns;
  int i= 0;
  (void)(int[]){(mns[i]= {n[plc.mn].d, n[plc.mn].x}, ls[i].resize(n[plc.lr[0]].sz), rs[i].resize(n[plc.lr[1]].sz), dump(ls[i].begin(), plc.lr[0]), dump(rs[i].begin(), plc.lr[1]), ++i)...};
  ni= 1, i= 0;
  (void)(int[]){((plc.mn ? (plc.mn= create(mns[i].first, mns[i].second)) : 0), plc.lr[0]= build(ls[i].begin(), ls[i].end()), plc.lr[1]= build(rs[i].begin(), rs[i].end()), ++i)...};
 }
 static inline void rebuild(std::vector<PiecewiseLinearConvex> &plcs) {
  size_t m= plcs.size();
  std::vector<std::vector<std::pair<T, T>>> ls(m), rs(m);
  std::vector<std::pair<T, T>> mns(m);
  for (int i= m; i--;) mns[i]= {n[plcs[i].mn].d, n[plcs[i].mn].x}, ls[i].resize(n[plcs[i].lr[0]].sz), rs[i].resize(n[plcs[i].lr[1]].sz), dump(ls[i].begin(), plcs[i].lr[0]), dump(rs[i].begin(), plcs[i].lr[1]);
  ni= 1;
  for (int i= m; i--;) (plcs[i].mn ? (plcs[i].mn= create(mns[i].first, mns[i].second)) : 0), plcs[i].lr[0]= build(ls[i].begin(), ls[i].end()), plcs[i].lr[1]= build(rs[i].begin(), rs[i].end());
 }
 static void reset() { ni= 1; }
 static bool pool_empty() {
  if constexpr (persistent) return ni >= NODE_SIZE * 0.8;
  else return ni + 1000 >= NODE_SIZE;
 }
 // f(x) += c
 void add_const(D c) { y+= c; }
 // f(x) += ax, /
 void add_linear(T a) { rem+= a; }
 //  f(x) += max(a(x-x0),b(x-x0)), (a < b)
 void add_max(T a, T b, T x0) {
  assert(lt(a, b));
  if (bf[0] && x0 <= bx[0]) y-= D(b) * x0, rem+= b;
  else if (bf[1] && bx[1] <= x0) y-= D(a) * x0, rem+= a;
  else if (T c= b - a; mn) {
   if (lt(n[mn].x, x0)) lr[1]= insert(lr[1], x0, c), y-= D(a) * x0, rem+= a;
   else if (lt(x0, n[mn].x)) lr[0]= insert(lr[0], x0, c), y-= D(b) * x0, rem+= b;
   else {
    if constexpr (persistent) mn= create(n[mn].d, n[mn].x);
    n[mn].d+= c, o[1]+= c, y-= D(a) * x0, rem+= a;
   }
  } else mn= create(c, x0), y-= D(a) * x0, rem+= a, o[0]= 0, o[1]= c;
 }
 // f(x) +=  max(0, a(x-x0))
 void add_ramp(T a, T x0) {
  if (lt(0, a)) add_max(0, a, x0);
  else if (lt(a, 0)) add_max(a, 0, x0);
 }
 // f(x) += a|x-x0|, \/
 void add_abs(T a, T x0) {
  if (assert(!lt(a, 0)); lt(0, a)) add_max(-a, a, x0);
 }
 // right=false : f(x) +=  inf  (x < x_0), right=true: f(x) += inf  (x_0 < x)
 void add_inf(bool right= false, T x0= 0) { return right ? add_inf<1>(x0) : add_inf<0>(x0); }
 // f(x) <- f(x-x0)
 void shift(T x0) {
  if (bx[0]+= x0, bx[1]+= x0, y-= D(rem) * x0; mn) prop(x0), prop(lr[0], x0), prop(lr[1], x0);
 }
 // rev=false: f(x) <- min_{y<=x} f(y), rev=true : f(x) <- min_{x<=y} f(y)
 void chmin_cum(bool rev= false) {
  if (bf[0] && bf[1] && !lt(bx[0], bx[1])) y+= D(rem) * bx[0], rem= 0;
  else if (bool r= lt(rem, 0); r || lt(0, rem)) {
   T u= (r ? -rem : rem) - o[r] - n[lr[r]].a;
   if (!lt(u, 0)) {
    if (r ^ rev) {
     if (lt(0, u) && bf[r]) {
      D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
      if (r ? y-= q : y+= q; mn) lr[!r]= join(lr[0], mn, lr[1]);
      o[!r]= u, rem= 0, mn= create(u, bx[r]), lr[!rev]= 0, o[!rev]= 0;
     }
    } else {
     assert(bf[r]);
     D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
     (r ? y-= q : y+= q), rem= 0, mn= lr[0]= lr[1]= 0, o[0]= o[1]= 0;
    }
    bf[!rev]= false;
    return;
   }
   if ((r ^ rev)) r ? slope_eval_cum<0, 1>() : slope_eval_cum<0, 0>();
   else r ? slope_eval_cum<1, 1>() : slope_eval_cum<1, 0>();
   if constexpr (persistent) mn= create(o[rev], n[mn].x);
   else n[mn].d= o[rev];
  } else if (mn) {
   if (!lt(0, o[rev])) {
    if (lr[rev]) std::tie(lr[rev], mn)= rev ? pop<0>(lr[rev]) : pop<1>(lr[rev]), o[rev]= n[mn].d;
    else mn= 0;
   } else {
    if constexpr (persistent) mn= create(o[rev], n[mn].x);
    else n[mn].d= o[rev];
   }
  }
  bf[!rev]= false, lr[!rev]= 0, o[!rev]= 0;
 }
 //  f(x) <- min_{lb<=y<=ub} f(x-y). (lb <= ub), \_/ -> \__/
 void chmin_slide_win(T lb, T ub) {
  assert(lb <= ub);
  if (bf[0] && bf[1] && !lt(bx[0], bx[1])) y+= D(rem) * bx[0], rem= 0;
  else {
   if (bool r= lt(rem, 0); r || lt(0, rem)) {
    T u= (r ? -rem : rem) - o[r] - n[lr[r]].a;
    if (lt(0, u)) {
     T b[2]= {lb, ub};
     if (bf[r]) {
      D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
      if (r ? y-= q : y+= q; mn) lr[!r]= join(lr[0], mn, lr[1]), prop<0>(lr[!r], b[!r]);
      lr[r]= 0, rem= 0, o[!r]= u, o[r]= 0, mn= create(u, bx[r] + b[!r]);
     } else {
      y-= D(rem) * b[!r];
      if (mn) prop(b[!r]), prop(lr[0], b[!r]), prop(lr[1], b[!r]);
     }
     bx[0]+= lb, bx[1]+= ub;
     return;
    }
    slope_eval(r);
   }
   if (mn) {
    if (!lt(0, o[0])) prop(ub);
    else if (!lt(0, o[1])) prop(lb);
    else lr[1]= join<0>(0, create(o[1], n[mn].x), lr[1]), prop(lb), n[mn].d= o[0], o[1]= 0;
    prop(lr[0], lb), prop(lr[1], ub);
   }
  }
  bx[0]+= lb, bx[1]+= ub;
 }
 std::optional<D> operator()(T x) {
  if (bf[0] && x < bx[0]) return std::nullopt;
  if (bf[1] && bx[1] < x) return std::nullopt;
  return calc_y(x) + D(rem) * x + y;
 }
 std::optional<D> min() {
  bool r= lt(rem, 0);
  if (!r && !lt(0, rem)) return y;
  T u= (r ? -rem : rem) - o[r] - n[lr[r]].a;
  if (lt(0, u)) {
   if (!bf[r]) return std::nullopt;
   D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
   return r ? y - q : y + q;
  }
  return slope_eval(r), y;
 }
 std::array<T, 2> argmin() {
  if (bool r= lt(rem, 0); r || lt(0, rem)) {
   if (lt(o[r] + n[lr[r]].a, (r ? -rem : rem))) {
    if (!bf[r]) return {1, 0};  // no solution
    return {bx[r], bx[r]};
   }
   slope_eval(r);
  }
  std::array<T, 2> ret= {bx[0], bx[1]};
  int t= mn;
  if (!t) return ret;
  bool r= lt(0, o[0]);
  if (r && lt(0, o[1])) ret[0]= ret[1]= n[t].x;
  else if (ret[!r]= n[t].x, t= lr[r]; t) {
   for (; push(t), n[t].ch[!r];) t= n[t].ch[!r];
   ret[r]= n[t].x;
  } else if (!bf[r]) return {1, 0};  // no solution
  return ret;
 }
 size_t size() { return n[lr[0]].sz + n[lr[1]].sz + !!mn; }
 PiecewiseLinearConvex &operator+=(const PiecewiseLinearConvex &g) { return *this= *this + g; }
 PiecewiseLinearConvex operator+(PiecewiseLinearConvex g) const {
  PiecewiseLinearConvex ret= *this;
  if (g.bf[0]) ret.add_inf(false, g.bx[0]);
  if (g.bf[1]) ret.add_inf(true, g.bx[1]);
  if (bf[0]) g.add_inf(false, bx[0]);
  if (bf[1]) g.add_inf(true, bx[1]);
  ret.y+= g.y, ret.rem+= g.rem;
  if (!g.mn) return ret;
  if (!ret.mn) return ret.mn= g.mn, ret.lr[0]= g.lr[0], ret.lr[1]= g.lr[1], ret.o[0]= g.o[0], ret.o[1]= g.o[1], ret;
  ret.y+= n[ret.lr[0]].s + D(n[ret.mn].x) * ret.o[0] + n[g.lr[0]].s + D(n[g.mn].x) * g.o[0], ret.rem-= ret.o[0] + n[ret.lr[0]].a + g.o[0] + n[g.lr[0]].a;
  int t= unite(join(ret.lr[0], ret.mn, ret.lr[1]), join(g.lr[0], g.mn, g.lr[1]));
  return std::tie(ret.lr[1], ret.mn)= pop<0>(t), ret.lr[0]= 0, ret.o[0]= 0, ret.o[1]= n[ret.mn].d, ret;
 }
 std::vector<T> dump_xs() {
  std::vector<T> xs;
  if (bf[0]) xs.push_back(bx[0]);
  dump_xs(lr[0], xs);
  if (mn) xs.push_back(n[mn].x);
  dump_xs(lr[1], xs);
  if (bf[1]) xs.push_back(bx[1]);
  return xs;
 }
 std::vector<std::pair<T, D>> dump_xys() {
  auto xs= dump_xs();
  std::vector<std::pair<T, D>> xys(xs.size());
  for (int i= xs.size(); i--;) xys[i]= {xs[i], operator()(xs[i])};
  return xys;
 }
 std::vector<T> dump_slopes() {
  std::vector<T> as;
  if (mn) as.push_back(-o[0]), dump_slopes_l(lr[0], o[0], as), std::reverse(as.begin(), as.end()), as.push_back(o[1]), dump_slopes_r(lr[1], o[1], as);
  else as.push_back(0);
  for (auto &a: as) a+= rem;
  return as;
 }
};
using namespace std;
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int N, H;
 cin >> N >> H;
 PiecewiseLinearConvex<long long> f;
 for (int i= 0; i < N; ++i) {
  int S;
  cin >> S;
  f.chmin_slide_win(-H, H);
  f.add_abs(1, S);
 }
 cout << f.min().value() << '\n';
 return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 14 ms 57692 KB Output is correct
2 Correct 20 ms 57688 KB Output is correct
3 Correct 8 ms 57692 KB Output is correct
4 Correct 8 ms 57764 KB Output is correct
5 Correct 12 ms 57692 KB Output is correct
6 Correct 22 ms 57824 KB Output is correct
7 Correct 20 ms 57692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 57692 KB Output is correct
2 Correct 21 ms 57692 KB Output is correct
3 Correct 21 ms 57692 KB Output is correct
4 Correct 9 ms 57692 KB Output is correct
5 Correct 9 ms 57928 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 57692 KB Output is correct
2 Correct 10 ms 57924 KB Output is correct
3 Correct 7 ms 57688 KB Output is correct
4 Correct 7 ms 57692 KB Output is correct
5 Correct 7 ms 57744 KB Output is correct
6 Correct 8 ms 57692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 91 ms 58960 KB Output is correct
2 Correct 144 ms 59556 KB Output is correct
3 Correct 144 ms 59568 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 57692 KB Output is correct
2 Correct 20 ms 57688 KB Output is correct
3 Correct 8 ms 57692 KB Output is correct
4 Correct 8 ms 57764 KB Output is correct
5 Correct 12 ms 57692 KB Output is correct
6 Correct 22 ms 57824 KB Output is correct
7 Correct 20 ms 57692 KB Output is correct
8 Correct 9 ms 57692 KB Output is correct
9 Correct 21 ms 57692 KB Output is correct
10 Correct 21 ms 57692 KB Output is correct
11 Correct 9 ms 57692 KB Output is correct
12 Correct 9 ms 57928 KB Output is correct
13 Correct 8 ms 57688 KB Output is correct
14 Correct 9 ms 57692 KB Output is correct
15 Correct 9 ms 57872 KB Output is correct
16 Correct 9 ms 57692 KB Output is correct
17 Correct 8 ms 57792 KB Output is correct
18 Correct 13 ms 57780 KB Output is correct
19 Correct 12 ms 57692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 57692 KB Output is correct
2 Correct 20 ms 57688 KB Output is correct
3 Correct 8 ms 57692 KB Output is correct
4 Correct 8 ms 57764 KB Output is correct
5 Correct 12 ms 57692 KB Output is correct
6 Correct 22 ms 57824 KB Output is correct
7 Correct 20 ms 57692 KB Output is correct
8 Correct 9 ms 57692 KB Output is correct
9 Correct 21 ms 57692 KB Output is correct
10 Correct 21 ms 57692 KB Output is correct
11 Correct 9 ms 57692 KB Output is correct
12 Correct 9 ms 57928 KB Output is correct
13 Correct 8 ms 57688 KB Output is correct
14 Correct 9 ms 57692 KB Output is correct
15 Correct 9 ms 57872 KB Output is correct
16 Correct 9 ms 57692 KB Output is correct
17 Correct 8 ms 57792 KB Output is correct
18 Correct 13 ms 57780 KB Output is correct
19 Correct 12 ms 57692 KB Output is correct
20 Correct 8 ms 57692 KB Output is correct
21 Correct 10 ms 57692 KB Output is correct
22 Correct 8 ms 57912 KB Output is correct
23 Correct 10 ms 57692 KB Output is correct
24 Correct 9 ms 57692 KB Output is correct
25 Correct 9 ms 57832 KB Output is correct
26 Correct 9 ms 57692 KB Output is correct
27 Correct 10 ms 57932 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 57692 KB Output is correct
2 Correct 20 ms 57688 KB Output is correct
3 Correct 8 ms 57692 KB Output is correct
4 Correct 8 ms 57764 KB Output is correct
5 Correct 12 ms 57692 KB Output is correct
6 Correct 22 ms 57824 KB Output is correct
7 Correct 20 ms 57692 KB Output is correct
8 Correct 9 ms 57692 KB Output is correct
9 Correct 21 ms 57692 KB Output is correct
10 Correct 21 ms 57692 KB Output is correct
11 Correct 9 ms 57692 KB Output is correct
12 Correct 9 ms 57928 KB Output is correct
13 Correct 8 ms 57688 KB Output is correct
14 Correct 9 ms 57692 KB Output is correct
15 Correct 9 ms 57872 KB Output is correct
16 Correct 9 ms 57692 KB Output is correct
17 Correct 8 ms 57792 KB Output is correct
18 Correct 13 ms 57780 KB Output is correct
19 Correct 12 ms 57692 KB Output is correct
20 Correct 8 ms 57692 KB Output is correct
21 Correct 10 ms 57692 KB Output is correct
22 Correct 8 ms 57912 KB Output is correct
23 Correct 10 ms 57692 KB Output is correct
24 Correct 9 ms 57692 KB Output is correct
25 Correct 9 ms 57832 KB Output is correct
26 Correct 9 ms 57692 KB Output is correct
27 Correct 10 ms 57932 KB Output is correct
28 Correct 12 ms 57792 KB Output is correct
29 Correct 13 ms 57948 KB Output is correct
30 Correct 10 ms 57944 KB Output is correct
31 Correct 13 ms 57944 KB Output is correct
32 Correct 11 ms 57692 KB Output is correct
33 Correct 12 ms 57816 KB Output is correct
34 Correct 13 ms 57948 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 57692 KB Output is correct
2 Correct 20 ms 57688 KB Output is correct
3 Correct 8 ms 57692 KB Output is correct
4 Correct 8 ms 57764 KB Output is correct
5 Correct 12 ms 57692 KB Output is correct
6 Correct 22 ms 57824 KB Output is correct
7 Correct 20 ms 57692 KB Output is correct
8 Correct 9 ms 57692 KB Output is correct
9 Correct 21 ms 57692 KB Output is correct
10 Correct 21 ms 57692 KB Output is correct
11 Correct 9 ms 57692 KB Output is correct
12 Correct 9 ms 57928 KB Output is correct
13 Correct 8 ms 57692 KB Output is correct
14 Correct 10 ms 57924 KB Output is correct
15 Correct 7 ms 57688 KB Output is correct
16 Correct 7 ms 57692 KB Output is correct
17 Correct 7 ms 57744 KB Output is correct
18 Correct 8 ms 57692 KB Output is correct
19 Correct 8 ms 57688 KB Output is correct
20 Correct 9 ms 57692 KB Output is correct
21 Correct 9 ms 57872 KB Output is correct
22 Correct 9 ms 57692 KB Output is correct
23 Correct 8 ms 57792 KB Output is correct
24 Correct 13 ms 57780 KB Output is correct
25 Correct 12 ms 57692 KB Output is correct
26 Correct 8 ms 57692 KB Output is correct
27 Correct 10 ms 57692 KB Output is correct
28 Correct 8 ms 57912 KB Output is correct
29 Correct 10 ms 57692 KB Output is correct
30 Correct 9 ms 57692 KB Output is correct
31 Correct 9 ms 57832 KB Output is correct
32 Correct 9 ms 57692 KB Output is correct
33 Correct 10 ms 57932 KB Output is correct
34 Correct 12 ms 57792 KB Output is correct
35 Correct 13 ms 57948 KB Output is correct
36 Correct 10 ms 57944 KB Output is correct
37 Correct 13 ms 57944 KB Output is correct
38 Correct 11 ms 57692 KB Output is correct
39 Correct 12 ms 57816 KB Output is correct
40 Correct 13 ms 57948 KB Output is correct
41 Correct 12 ms 57944 KB Output is correct
42 Correct 9 ms 57748 KB Output is correct
43 Correct 12 ms 57948 KB Output is correct
44 Correct 10 ms 57928 KB Output is correct
45 Correct 16 ms 57944 KB Output is correct
46 Correct 11 ms 57948 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 57692 KB Output is correct
2 Correct 20 ms 57688 KB Output is correct
3 Correct 8 ms 57692 KB Output is correct
4 Correct 8 ms 57764 KB Output is correct
5 Correct 12 ms 57692 KB Output is correct
6 Correct 22 ms 57824 KB Output is correct
7 Correct 20 ms 57692 KB Output is correct
8 Correct 9 ms 57692 KB Output is correct
9 Correct 21 ms 57692 KB Output is correct
10 Correct 21 ms 57692 KB Output is correct
11 Correct 9 ms 57692 KB Output is correct
12 Correct 9 ms 57928 KB Output is correct
13 Correct 8 ms 57692 KB Output is correct
14 Correct 10 ms 57924 KB Output is correct
15 Correct 7 ms 57688 KB Output is correct
16 Correct 7 ms 57692 KB Output is correct
17 Correct 7 ms 57744 KB Output is correct
18 Correct 8 ms 57692 KB Output is correct
19 Correct 91 ms 58960 KB Output is correct
20 Correct 144 ms 59556 KB Output is correct
21 Correct 144 ms 59568 KB Output is correct
22 Correct 8 ms 57688 KB Output is correct
23 Correct 9 ms 57692 KB Output is correct
24 Correct 9 ms 57872 KB Output is correct
25 Correct 9 ms 57692 KB Output is correct
26 Correct 8 ms 57792 KB Output is correct
27 Correct 13 ms 57780 KB Output is correct
28 Correct 12 ms 57692 KB Output is correct
29 Correct 8 ms 57692 KB Output is correct
30 Correct 10 ms 57692 KB Output is correct
31 Correct 8 ms 57912 KB Output is correct
32 Correct 10 ms 57692 KB Output is correct
33 Correct 9 ms 57692 KB Output is correct
34 Correct 9 ms 57832 KB Output is correct
35 Correct 9 ms 57692 KB Output is correct
36 Correct 10 ms 57932 KB Output is correct
37 Correct 12 ms 57792 KB Output is correct
38 Correct 13 ms 57948 KB Output is correct
39 Correct 10 ms 57944 KB Output is correct
40 Correct 13 ms 57944 KB Output is correct
41 Correct 11 ms 57692 KB Output is correct
42 Correct 12 ms 57816 KB Output is correct
43 Correct 13 ms 57948 KB Output is correct
44 Correct 12 ms 57944 KB Output is correct
45 Correct 9 ms 57748 KB Output is correct
46 Correct 12 ms 57948 KB Output is correct
47 Correct 10 ms 57928 KB Output is correct
48 Correct 16 ms 57944 KB Output is correct
49 Correct 11 ms 57948 KB Output is correct
50 Correct 150 ms 59816 KB Output is correct
51 Correct 116 ms 59472 KB Output is correct
52 Correct 236 ms 59428 KB Output is correct
53 Correct 375 ms 59568 KB Output is correct
54 Correct 128 ms 59424 KB Output is correct
55 Correct 284 ms 59436 KB Output is correct
56 Correct 358 ms 59476 KB Output is correct
57 Correct 347 ms 59472 KB Output is correct
58 Correct 82 ms 58784 KB Output is correct
59 Correct 247 ms 59556 KB Output is correct