Submission #1067929

# Submission time Handle Problem Language Result Execution time Memory
1067929 2024-08-21T05:38:57 Z golf Longest Trip (IOI23_longesttrip) C++17
100 / 100
16 ms 868 KB
#include "longesttrip.h"
#include <bits/stdc++.h>
using namespace std;

vector<int> solve_d3(int N, int D)
{
    vector<int> res(N);
    iota(res.begin(), res.end(), 0);
    return res;
}

vector<int> solve_d2(int N, int D)
{
    queue<int> stops;
    for (int i = 1; i < N; i++)
        stops.push(i);

    deque<int> trip = {0};
    while (stops.size() > 1)
    {
        int next = stops.front();
        stops.pop();
        int last = trip.back();

        if (are_connected({next}, {last}))
        {
            trip.push_back(next);
        }
        else
        {
            trip.push_back(stops.front());
            stops.pop();
            trip.push_back(next);
        }
    }

    if (stops.size() == 1)
    {
        int next = stops.front();
        int last = trip.back();
        if (are_connected({next}, {last}))
        {
            trip.push_back(next);
        }
        else
        {
            trip.push_front(stops.front());
            stops.pop();
        }
    }

    vector<int> res;
    for (int x : trip)
        res.push_back(x);
    return res;
}

int pop(queue<int> &q)
{
    int x = q.front();
    q.pop();
    return x;
}

const bool maybe = true;

map<pair<set<int>, set<int>>, bool> cache;
bool are_conn(vector<int> a, vector<int> b) {
    // if (a.size() != 1 || b.size() != 1) return are_connected(a, b);

    // int x = a[0], y = b[0];
    // if (x < y) swap(x, y);
    // if (cache.count({x, y})) return cache[{x, y}];

    // cache[{x, y}] = are_connected(a, b);
    // return cache[{x, y}];
    set<int> A, B;
    for (int x : a) A.insert(x);
    for (int x : b) B.insert(x);

    if (cache.count({A, B})) return cache[{A, B}];
    if (cache.count({B, A})) return cache[{B, A}];

    bool res = are_connected(a, b);
    cache[{A, B}] = res;
    cache[{B, A}] = res;
    return res;
}

vector<int> longest_trip(int N, int D)
{
    if (D == 3)
        return solve_d3(N, D);
    if (D == 2)
        return solve_d2(N, D);

    cache.clear();

    srand(time(0));
    vector<int> rand_nodes(N);
    iota(rand_nodes.begin(), rand_nodes.end(), 0);
    random_shuffle(rand_nodes.begin(), rand_nodes.end());

    queue<int> nodes;
    for (int x : rand_nodes)
        nodes.push(x);

    vector<int> a, b;
    a.push_back(pop(nodes));

    bool ends_connected = maybe;
    // false = a and b are not connected
    // true  = a and b are maybe connected
    while (!nodes.empty())
    {
        int n = pop(nodes);

        if (b.empty()) {
            if (are_conn({a.back()}, {n})) {
                a.push_back(n);
            } else {
                b.push_back(n);

                cache[{{a.back()}, {b.back()}}] = false;
                cache[{{b.back()}, {a.back()}}] = false;
                ends_connected = false;
            }

            continue;
        }

        if (are_conn({a.back()}, {n})) {
            a.push_back(n);
            ends_connected = maybe;
        } else if (!ends_connected || !are_conn({a.back()}, {b.back()})) {
            b.push_back(n);
            cache[{{a.back()}, {b.back()}}] = false;
            cache[{{b.back()}, {a.back()}}] = false;
            ends_connected = false;
        } else {
            while (!b.empty()) {
                a.push_back(b.back());
                b.pop_back();
            }

            if (are_conn({a.back()}, {n})) {
                a.push_back(n);
                ends_connected = maybe;
            } else {
                b.push_back(n);
                cache[{{a.back()}, {b.back()}}] = false;
                cache[{{b.back()}, {a.back()}}] = false;
                ends_connected = false;
            }
        }
    }

    if (b.empty())
    {
        return a;
    }

    if (ends_connected == maybe && are_conn({a.back()}, {b.back()}))
    {
        while (!b.empty())
        {
            a.push_back(b.back());
            b.pop_back();
        }

        return a;
    }

    if (!are_conn(a, b))
    {
        if (a.size() > b.size())
        {
            return a;
        }
        else
        {
            return b;
        }
    }

    if (a.size() < b.size())
        swap(a, b);

    assert(a.size() >= b.size());

    bool a_circle = are_conn({a.front()}, {a.back()});

    if (!a_circle)
    {
        for (int x : a)
            b.push_back(x);
        return b;
    }

    // a is a circle

    bool b_circle = b.size() == 1 || are_conn({b.front()}, {b.back()});

    if (!b_circle) {
        for (int x : b) a.push_back(x);
        return a;
    }

    // both a and b are circles
    // deque<int> A, B;
    // for (int x : a) A.push_back(x);
    // for (int x : b) B.push_back(x);

    // while (true) {
    //     int e = A.front(); A.pop_front();
    //     A.push_back(e);
    //     if (are_conn({e}, b)) break;
    // }

    // while (true) {
    //     int e = B.back(); B.pop_back();
    //     B.push_front(e);
    //     if (are_conn({A.back()}, {e})) break;
    // }

    // vector<int> res;
    // for (int x : A) res.push_back(x);
    // for (int x : B) res.push_back(x);
    // return res;

    // both a and b are circles
    // there is atleast one edge between a and b

    int a_connect;
    vector<int> x, y, A;

    for (int i: a) A.push_back(i);

    while (A.size() > 1) {
        x.clear();
        y.clear();
        for (int i = 0; i < A.size(); i++) {
            if (i % 2 == 0) x.push_back(A[i]);
            else y.push_back(A[i]);
        }

        if (are_conn(x, b)) { // the connection is in x
            A = x;
        } else {
            A = y;
        }
    }

    assert(A.size() == 1);
    a_connect = A[0];

    x.clear();
    y.clear();
    vector<int> B;
    int b_connect;

    for (int i: b) B.push_back(i);
    while (B.size() > 1) {
        x.clear();
        y.clear();
        for (int i = 0; i < B.size(); i++) {
            if (i % 2 == 0) x.push_back(B[i]);
            else y.push_back(B[i]);
        }

        if (are_conn({a_connect}, x)) { // the connection is in x
            B = x;
        } else {
            B = y;
        }
    }

    assert(B.size() == 1);
    b_connect = B[0];


    deque<int> A_d, B_d;
    for (int x : a) A_d.push_back(x);
    for (int x : b) B_d.push_back(x);

    while (true) {
        A_d.push_back(A_d.front());
        A_d.pop_front();
        if (A_d.back() == a_connect) break;
    }

    while (true) {
        B_d.push_front(B_d.back());
        B_d.pop_back();
        if (B_d.front() == b_connect) break;
    }

    vector<int> res;
    for (int x: A_d) res.push_back(x);
    for (int x: B_d) res.push_back(x);
    return res;
}

Compilation message

longesttrip.cpp: In function 'std::vector<int> longest_trip(int, int)':
longesttrip.cpp:242:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  242 |         for (int i = 0; i < A.size(); i++) {
      |                         ~~^~~~~~~~~~
longesttrip.cpp:266:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  266 |         for (int i = 0; i < B.size(); i++) {
      |                         ~~^~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 2 ms 460 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 344 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 340 KB Output is correct
2 Correct 6 ms 344 KB Output is correct
3 Correct 5 ms 344 KB Output is correct
4 Correct 6 ms 344 KB Output is correct
5 Correct 4 ms 344 KB Output is correct
6 Correct 5 ms 344 KB Output is correct
7 Correct 5 ms 344 KB Output is correct
8 Correct 7 ms 344 KB Output is correct
9 Correct 5 ms 344 KB Output is correct
10 Correct 4 ms 344 KB Output is correct
11 Correct 7 ms 344 KB Output is correct
12 Correct 6 ms 344 KB Output is correct
13 Correct 7 ms 344 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 344 KB Output is correct
2 Correct 9 ms 344 KB Output is correct
3 Correct 6 ms 344 KB Output is correct
4 Correct 6 ms 344 KB Output is correct
5 Correct 7 ms 600 KB Output is correct
6 Correct 8 ms 344 KB Output is correct
7 Correct 7 ms 344 KB Output is correct
8 Correct 9 ms 344 KB Output is correct
9 Correct 9 ms 344 KB Output is correct
10 Correct 6 ms 344 KB Output is correct
11 Correct 8 ms 344 KB Output is correct
12 Correct 7 ms 344 KB Output is correct
13 Correct 6 ms 344 KB Output is correct
14 Correct 8 ms 344 KB Output is correct
15 Correct 9 ms 344 KB Output is correct
16 Correct 9 ms 344 KB Output is correct
17 Correct 8 ms 344 KB Output is correct
18 Correct 8 ms 344 KB Output is correct
19 Correct 8 ms 340 KB Output is correct
20 Correct 10 ms 600 KB Output is correct
21 Correct 7 ms 344 KB Output is correct
22 Correct 10 ms 600 KB Output is correct
23 Correct 10 ms 460 KB Output is correct
24 Correct 7 ms 340 KB Output is correct
25 Correct 12 ms 344 KB Output is correct
26 Correct 8 ms 344 KB Output is correct
27 Correct 7 ms 384 KB Output is correct
28 Correct 10 ms 344 KB Output is correct
29 Correct 9 ms 344 KB Output is correct
30 Correct 6 ms 344 KB Output is correct
31 Correct 9 ms 344 KB Output is correct
32 Correct 11 ms 344 KB Output is correct
33 Correct 9 ms 344 KB Output is correct
34 Correct 10 ms 496 KB Output is correct
35 Correct 8 ms 344 KB Output is correct
36 Correct 7 ms 440 KB Output is correct
37 Correct 7 ms 344 KB Output is correct
38 Correct 11 ms 600 KB Output is correct
39 Correct 9 ms 560 KB Output is correct
40 Correct 9 ms 600 KB Output is correct
41 Correct 11 ms 600 KB Output is correct
42 Correct 9 ms 600 KB Output is correct
43 Correct 11 ms 600 KB Output is correct
44 Correct 12 ms 636 KB Output is correct
45 Correct 9 ms 344 KB Output is correct
46 Correct 14 ms 344 KB Output is correct
47 Correct 9 ms 344 KB Output is correct
48 Correct 9 ms 344 KB Output is correct
49 Correct 9 ms 344 KB Output is correct
50 Correct 8 ms 344 KB Output is correct
51 Correct 10 ms 504 KB Output is correct
52 Correct 10 ms 508 KB Output is correct
53 Correct 8 ms 344 KB Output is correct
54 Correct 8 ms 344 KB Output is correct
55 Correct 10 ms 344 KB Output is correct
56 Correct 8 ms 600 KB Output is correct
57 Correct 9 ms 600 KB Output is correct
58 Correct 12 ms 600 KB Output is correct
59 Correct 15 ms 600 KB Output is correct
60 Correct 10 ms 600 KB Output is correct
61 Correct 10 ms 600 KB Output is correct
62 Correct 11 ms 600 KB Output is correct
63 Correct 15 ms 856 KB Output is correct
64 Correct 11 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 344 KB Output is correct
2 Correct 6 ms 344 KB Output is correct
3 Correct 8 ms 344 KB Output is correct
4 Correct 6 ms 344 KB Output is correct
5 Correct 7 ms 344 KB Output is correct
6 Correct 8 ms 344 KB Output is correct
7 Correct 8 ms 344 KB Output is correct
8 Correct 8 ms 344 KB Output is correct
9 Correct 6 ms 344 KB Output is correct
10 Correct 10 ms 344 KB Output is correct
11 Correct 8 ms 460 KB Output is correct
12 Correct 7 ms 428 KB Output is correct
13 Correct 7 ms 344 KB Output is correct
14 Correct 9 ms 344 KB Output is correct
15 Correct 12 ms 344 KB Output is correct
16 Correct 13 ms 344 KB Output is correct
17 Correct 11 ms 600 KB Output is correct
18 Correct 8 ms 344 KB Output is correct
19 Correct 11 ms 600 KB Output is correct
20 Correct 10 ms 340 KB Output is correct
21 Correct 11 ms 344 KB Output is correct
22 Correct 11 ms 344 KB Output is correct
23 Correct 8 ms 344 KB Output is correct
24 Correct 11 ms 344 KB Output is correct
25 Correct 9 ms 344 KB Output is correct
26 Correct 12 ms 344 KB Output is correct
27 Correct 8 ms 344 KB Output is correct
28 Correct 12 ms 344 KB Output is correct
29 Correct 7 ms 344 KB Output is correct
30 Correct 10 ms 344 KB Output is correct
31 Correct 7 ms 344 KB Output is correct
32 Correct 10 ms 344 KB Output is correct
33 Correct 12 ms 344 KB Output is correct
34 Correct 13 ms 344 KB Output is correct
35 Correct 10 ms 344 KB Output is correct
36 Correct 9 ms 344 KB Output is correct
37 Correct 11 ms 344 KB Output is correct
38 Correct 9 ms 340 KB Output is correct
39 Correct 13 ms 344 KB Output is correct
40 Correct 9 ms 344 KB Output is correct
41 Correct 9 ms 344 KB Output is correct
42 Correct 8 ms 344 KB Output is correct
43 Correct 10 ms 868 KB Output is correct
44 Correct 9 ms 576 KB Output is correct
45 Correct 7 ms 344 KB Output is correct
46 Correct 10 ms 600 KB Output is correct
47 Correct 8 ms 344 KB Output is correct
48 Correct 7 ms 520 KB Output is correct
49 Correct 9 ms 600 KB Output is correct
50 Correct 12 ms 584 KB Output is correct
51 Correct 10 ms 424 KB Output is correct
52 Correct 9 ms 600 KB Output is correct
53 Correct 10 ms 600 KB Output is correct
54 Correct 13 ms 428 KB Output is correct
55 Correct 9 ms 608 KB Output is correct
56 Correct 10 ms 600 KB Output is correct
57 Correct 9 ms 612 KB Output is correct
58 Correct 12 ms 600 KB Output is correct
59 Correct 13 ms 648 KB Output is correct
60 Correct 10 ms 868 KB Output is correct
61 Correct 12 ms 436 KB Output is correct
62 Correct 7 ms 600 KB Output is correct
63 Correct 8 ms 600 KB Output is correct
64 Correct 11 ms 664 KB Output is correct
65 Correct 10 ms 600 KB Output is correct
66 Correct 11 ms 600 KB Output is correct
67 Correct 11 ms 600 KB Output is correct
68 Correct 10 ms 600 KB Output is correct
69 Correct 12 ms 600 KB Output is correct
70 Correct 16 ms 600 KB Output is correct
71 Correct 11 ms 632 KB Output is correct
72 Correct 12 ms 668 KB Output is correct
73 Correct 10 ms 600 KB Output is correct
74 Correct 12 ms 684 KB Output is correct
75 Correct 10 ms 600 KB Output is correct
76 Correct 10 ms 600 KB Output is correct
77 Correct 8 ms 496 KB Output is correct
78 Correct 9 ms 600 KB Output is correct
79 Correct 10 ms 600 KB Output is correct
80 Correct 15 ms 856 KB Output is correct
81 Correct 10 ms 600 KB Output is correct
82 Correct 11 ms 724 KB Output is correct