Submission #1066623

# Submission time Handle Problem Language Result Execution time Memory
1066623 2024-08-20T03:29:58 Z fractlpaca Tropical Garden (IOI11_garden) C++17
100 / 100
1177 ms 32596 KB
#include "garden.h"
#include "gardenlib.h"

#include <bits/stdc++.h>
#define v vector
#define pii pair<int,int>
#define ll long long
#define pli pair<long long, int>
#define fi first
#define se second

#define SUBTASK 3

using namespace std;


int LIMIT = 29;
int jump_amount(v<v<int>> &jumps, int a, int amount) {
  for (int j=LIMIT; j>=0; j--) {
    if (1<<j <= amount) {
      amount -= 1<<j;
      a = jumps[j][a];
    }
  }
  return a;
}


void dfs(v<v<int>> &adj, int node, int dist, v<int> &dists) {
  if (dists[node]!=-1) return;
  dists[node] = dist;
  for (int nex: adj[node]) {
    dfs(adj, nex, dist+1, dists);
  }
}

//void bfs(v<v<int>> &adj, int node, int dist, v<int> &dists) {
  //queue<pii> q;
  //q.push({node, dist});
  
  //while (q.size()) {
    //pii front = q.front();
    //int cur=front.fi;
    //int dist=front.se;
    //q.pop();
    
    //if (dists[cur]!=-1) continue;
    //dists[cur] = dist;
    
    //for (int nex: adj[cur]) {
      //q.push({nex, dist+1});
    //}
  //}
  
//}


void count_routes(int N, int M, int P, int R[][2], int Q, int G[])
{
  v<int> first (N, -1);
  v<int> second (N, -1);
  v<int> next (2*N, -1);
  
  // Build first and second choices
  for (int i=0; i<M; i++) {
    int a=R[i][0];
    int b=R[i][1];
    
    if (first[a]==-1) first[a]=b;
    else if (second[a]==-1) second[a]=b;
    
    if (first[b]==-1) first[b]=a;
    else if (second[b]==-1) second[b]=a;
  }
    
  for (int i=0; i<N; i++) {
    if (second[i]==-1) second[i]=first[i];
  }
  
  // Build next
  for (int i=0; i<N; i++) {
    if (first[first[i]]==i)  next[2*i]=first[i]*2+1;
    else next[2*i]=first[i]*2;
    
    if (first[second[i]]==i) next[2*i+1]=second[i]*2+1;
    else next[2*i+1]=second[i]*2;
  }

  
  //for (int i=0; i<N; i++) {
    //cerr<<i<<": ("<<next[2*i]/2<<","<<next[2*i]%2<<") ("<<next[2*i+1]/2<<","<<next[2*i+1]%2<<")"<<endl;
  //}
  
  if (SUBTASK==1) {
  
  assert(Q==1);
  
  int K=G[0];
  int count = 0;
  for (int i=0; i<N; i++) {
    int cur=2*i;
    for (int j=0; j<K; j++) {
      cur = next[cur];
    }
    if (cur/2 == P) count++;
  }
  answer(count);
  return;
  
  }
  
  // SUBTASK 2
  if (SUBTASK==2) {
  
  // Build jump pointers
  v<v<int>> jumps (LIMIT+1, v<int> (2*N, 0));
  jumps[0] = next;
  for (int i=1; i<=LIMIT; i++) {
    for (int j=0; j<2*N; j++) {
      jumps[i][j] = jumps[i-1][jumps[i-1][j]];
    }
  }
  
  //for (int j=0; j<2*N; j++) {
    //cerr<<j<<" ";
  //}cerr<<endl;
  //for (int i=0; i<=3; i++) {
    //for (int j=0; j<2*N; j++) {
      //cerr<<jumps[i][j]<<" ";
    //}cerr<<endl;
  //}
  
  
  
  for (int i=0; i<Q; i++) {
    int K=G[i];
    int count=0;
    
    for (int j=0; j<N; j++) {
      int end = jump_amount(jumps, 2*j, K);
      //cerr<<j<<" jumps "<<K<<" to ("<< end/2<<","<<end%2<<")"<<endl;
      if (end/2 == P) count++;
    }
    
    answer(count);
  }
  return;
  
  }
  
  // SUBTASK 3
  if (SUBTASK==3) {
  
  
  // Find cycle lengths
  int p_cycle0 = 1e9+100;
  int p_cycle1 = 1e9+100;
  
  int cur=2*P;
  for (int i=0; i<2*N; i++) {
    cur=next[cur];
    if (cur==2*P) {
      p_cycle0 = i+1;
      break;
    }
  }
  
  cur=2*P+1;
  for (int i=0; i<2*N; i++) {
    cur=next[cur];
    if (cur==2*P+1) {
      p_cycle1 = i+1;
      break;
    }
  }
  
  // Construct reverse graph
  v<v<int>> adj (2*N, v<int>(0));
  for (int i=0; i<2*N; i++) {
    adj[next[i]].push_back(i);
  }
  
  v<int> dists0 (2*N, -1);
  v<int> dists1 (2*N, -1);
  // Populate dists0/1
  dfs(adj, 2*P, 0, dists0);
  dfs(adj, 2*P+1, 0, dists1);
  
  cerr<<p_cycle0<<" "<<p_cycle1<<endl;
  
  //for (int i=0; i<2*N; i++) cerr<<i<<" ";
  //cerr<<endl;
  //for (int i=0; i<2*N; i++) {
    //cerr<<dists0[i]<<" ";
  //}cerr<<endl;
  //for (int i=0; i<2*N; i++) {
    //cerr<<dists1[i]<<" ";
  //}cerr<<endl;
  
  for (int i=0; i<Q; i++) {
    int K=G[i];
    int count=0;
    for (int j=0; j<N; j++) {
      if ((dists0[2*j]!=-1 && dists0[2*j]<=K && (K-dists0[2*j])%p_cycle0==0)  ||
          (dists1[2*j]!=-1 && dists1[2*j]<=K && (K-dists1[2*j])%p_cycle1==0))
        count++;
    }
    answer(count);
  }
  return;
  
  }
}


# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 0 ms 604 KB Output is correct
4 Correct 1 ms 440 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 0 ms 604 KB Output is correct
4 Correct 1 ms 440 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 6 ms 5468 KB Output is correct
12 Correct 15 ms 7516 KB Output is correct
13 Correct 32 ms 23608 KB Output is correct
14 Correct 39 ms 19284 KB Output is correct
15 Correct 51 ms 19512 KB Output is correct
16 Correct 38 ms 14684 KB Output is correct
17 Correct 34 ms 12884 KB Output is correct
18 Correct 13 ms 7408 KB Output is correct
19 Correct 49 ms 19196 KB Output is correct
20 Correct 57 ms 19540 KB Output is correct
21 Correct 47 ms 14676 KB Output is correct
22 Correct 36 ms 12884 KB Output is correct
23 Correct 43 ms 21180 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 0 ms 604 KB Output is correct
4 Correct 1 ms 440 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 6 ms 5468 KB Output is correct
12 Correct 15 ms 7516 KB Output is correct
13 Correct 32 ms 23608 KB Output is correct
14 Correct 39 ms 19284 KB Output is correct
15 Correct 51 ms 19512 KB Output is correct
16 Correct 38 ms 14684 KB Output is correct
17 Correct 34 ms 12884 KB Output is correct
18 Correct 13 ms 7408 KB Output is correct
19 Correct 49 ms 19196 KB Output is correct
20 Correct 57 ms 19540 KB Output is correct
21 Correct 47 ms 14676 KB Output is correct
22 Correct 36 ms 12884 KB Output is correct
23 Correct 43 ms 21180 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 57 ms 5468 KB Output is correct
26 Correct 82 ms 7512 KB Output is correct
27 Correct 701 ms 23604 KB Output is correct
28 Correct 650 ms 19284 KB Output is correct
29 Correct 753 ms 19796 KB Output is correct
30 Correct 399 ms 14672 KB Output is correct
31 Correct 436 ms 12864 KB Output is correct
32 Correct 81 ms 7588 KB Output is correct
33 Correct 666 ms 19280 KB Output is correct
34 Correct 736 ms 19540 KB Output is correct
35 Correct 414 ms 14800 KB Output is correct
36 Correct 721 ms 12880 KB Output is correct
37 Correct 432 ms 21076 KB Output is correct
38 Correct 1177 ms 32596 KB Output is correct