# | Submission time | Handle | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
1066534 | 2024-08-20T00:45:13 Z | myst6 | Ancient Machine 2 (JOI23_ancient2) | C++17 | 74 ms | 1780 KB |
#include "ancient2.h" #include <bits/stdc++.h> using namespace std; using ll = long long; const int MAX_BITS = 1000; const int BOUND = 56; #define bs bitset<MAX_BITS> vector<pair<bs,array<ll,3>>> MIS(const vector<pair<bs,array<ll,3>>>& vectors) { vector<bs> basis; // Store the basis vectors here vector<pair<bs,array<ll,3>>> mis; for (const auto& vec : vectors) { bs v = vec.first; // Copy the vector // Try to eliminate the current vector with the basis vectors for (const auto& b : basis) { if (v.none()) break; // If the vector is already zero, skip if (v.test(b._Find_first())) { // If leading bit matches v ^= b; // Subtract the basis vector (add in GF(2)) } } // If the vector is not zero after elimination, it's linearly independent if (v.any()) { basis.push_back(v); mis.push_back(vec); // Add the original vector to the mis } } return mis; } void gaussian_elimination(vector<bs> &A, bs &S, bs &b, int N) { int row = 0; for (int col = 0; col < N; ++col) { // Find pivot row int pivot = -1; for (int i = row; i < N; ++i) { if (A[i][col]) { pivot = i; break; } } if (pivot == -1) continue; // No pivot found, move to the next column // Swap pivot row with the current row swap(A[row], A[pivot]); // swap(b[row], b[pivot]); int tmp = b[row]; b[row] = b[pivot]; b[pivot] = tmp; // Eliminate below for (int i = row + 1; i < N; ++i) { if (A[i][col]) { A[i] ^= A[row]; // b[i] ^= b[row]; if (b[row]) b[i] = !b[i]; } } ++row; } // Backward substitution S.reset(); for (int i = row - 1; i >= 0; --i) { if (A[i].any()) { int leading_one = A[i]._Find_first(); S[leading_one] = b[i]; for (int j = leading_one + 1; j < N; ++j) { if (A[i][j]) { // S[leading_one] ^= S[j]; if (S[j]) S[leading_one] = !S[leading_one]; } } } } } string solve(int N, vector<pair<bs,int>> &info) { // Create bitsets vector<bs> A(N); bs S, b; // Populate the matrix A and vector b with parity information for (int i=0; i<N; i++) { A[i] = info[i].first; b[i] = info[i].second; } // Perform Gaussian elimination gaussian_elimination(A, S, b, N); // Output the reconstructed binary string string s = S.to_string(); reverse(s.begin(), s.end()); return s.substr(0, N); } string Solve(int N) { vector<pair<bs,int>> info; function<int(ll,int)> solve1 = [&](ll mask, int j) -> int { int m = 2 * j; vector<int> a(m), b(m); for (int r=0; r<j; r++) { a[r] = (r + 1) % j; b[r] = (r + 1) % j; a[j + r] = j + ((r + 1) % j); b[j + r] = j + ((r + 1) % j); if (mask & (1LL << r)) { swap(b[r], b[j + r]); } } return Query(m, a, b) / j; }; function<int(int)> solve2 = [&](int k) -> int { int m = k + 3; vector<int> a(m), b(m); for (int r=0; r<k; r++) { a[r] = r + 1; b[r] = r + 1; } a[k] = k + 1; b[k] = k + 2; a[k + 1] = b[k + 1] = k + 1; a[k + 2] = b[k + 2] = k + 2; return Query(m, a, b) - k - 1; }; vector<pair<bs,array<ll,3>>> all; for (int j=1; j<=BOUND; j++) { for (int i=0; i<j; i++) { bs here; for (int k=0; k<N; k++) { if (k % j == i) { here[k] = 1; } } all.push_back({here, {0, 1LL << i, j}}); } } for (int i=0; i<=min(99,N); i++) { bs here; here[i] = 1; all.push_back({here, {1, i, i}}); } for (int j=1; j<=BOUND; j++) { for (int i=1; i<j; i++) { bs here; for (int k=i; k<j; k+=i) { here[k] = 1; } here[i] = 1; all.push_back({here, {2, i, j}}); } } int A = all.size(); vector<pair<bs,array<ll,3>>> mis = MIS(all); for (auto &[HELP, bruh] : mis) { if (bruh[0] == 0) { info.push_back({HELP, solve1(bruh[1], bruh[2])}); } else if (bruh[0] == 1) { info.push_back({HELP, solve2(bruh[1])}); } else if (bruh[0] == 2) { // info.push_back({HELP, solve3(bruh[1], bruh[2])}); } else { assert(false); } } // cout << info.size() << "\n"; return solve(N, info); }
Compilation message
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
1 | Partially correct | 64 ms | 1384 KB | Output is partially correct |
2 | Partially correct | 62 ms | 1320 KB | Output is partially correct |
3 | Partially correct | 64 ms | 1264 KB | Output is partially correct |
4 | Partially correct | 61 ms | 1300 KB | Output is partially correct |
5 | Partially correct | 65 ms | 1536 KB | Output is partially correct |
6 | Partially correct | 66 ms | 1256 KB | Output is partially correct |
7 | Partially correct | 64 ms | 1380 KB | Output is partially correct |
8 | Partially correct | 66 ms | 1304 KB | Output is partially correct |
9 | Partially correct | 66 ms | 1380 KB | Output is partially correct |
10 | Partially correct | 63 ms | 1384 KB | Output is partially correct |
11 | Partially correct | 63 ms | 1380 KB | Output is partially correct |
12 | Partially correct | 64 ms | 1264 KB | Output is partially correct |
13 | Partially correct | 66 ms | 1640 KB | Output is partially correct |
14 | Partially correct | 65 ms | 1384 KB | Output is partially correct |
15 | Partially correct | 66 ms | 1272 KB | Output is partially correct |
16 | Partially correct | 63 ms | 1384 KB | Output is partially correct |
17 | Partially correct | 66 ms | 1384 KB | Output is partially correct |
18 | Partially correct | 63 ms | 1540 KB | Output is partially correct |
19 | Partially correct | 68 ms | 1780 KB | Output is partially correct |
20 | Partially correct | 62 ms | 1380 KB | Output is partially correct |
21 | Partially correct | 64 ms | 1264 KB | Output is partially correct |
22 | Partially correct | 63 ms | 1384 KB | Output is partially correct |
23 | Partially correct | 64 ms | 1384 KB | Output is partially correct |
24 | Partially correct | 63 ms | 1284 KB | Output is partially correct |
25 | Partially correct | 65 ms | 1380 KB | Output is partially correct |
26 | Partially correct | 69 ms | 1544 KB | Output is partially correct |
27 | Partially correct | 73 ms | 1384 KB | Output is partially correct |
28 | Partially correct | 62 ms | 1248 KB | Output is partially correct |
29 | Partially correct | 63 ms | 1512 KB | Output is partially correct |
30 | Partially correct | 65 ms | 1384 KB | Output is partially correct |
31 | Partially correct | 64 ms | 1384 KB | Output is partially correct |
32 | Partially correct | 64 ms | 1260 KB | Output is partially correct |
33 | Partially correct | 64 ms | 1384 KB | Output is partially correct |
34 | Partially correct | 63 ms | 1324 KB | Output is partially correct |
35 | Partially correct | 65 ms | 1280 KB | Output is partially correct |
36 | Partially correct | 71 ms | 1260 KB | Output is partially correct |
37 | Partially correct | 70 ms | 1380 KB | Output is partially correct |
38 | Partially correct | 71 ms | 1276 KB | Output is partially correct |
39 | Partially correct | 64 ms | 1548 KB | Output is partially correct |
40 | Partially correct | 74 ms | 1384 KB | Output is partially correct |
41 | Partially correct | 65 ms | 1276 KB | Output is partially correct |
42 | Partially correct | 67 ms | 1264 KB | Output is partially correct |
43 | Partially correct | 65 ms | 1384 KB | Output is partially correct |
44 | Partially correct | 64 ms | 1268 KB | Output is partially correct |
45 | Partially correct | 65 ms | 1540 KB | Output is partially correct |
46 | Partially correct | 63 ms | 1384 KB | Output is partially correct |
47 | Partially correct | 66 ms | 1380 KB | Output is partially correct |
48 | Partially correct | 66 ms | 1264 KB | Output is partially correct |
49 | Partially correct | 67 ms | 1268 KB | Output is partially correct |
50 | Partially correct | 70 ms | 1544 KB | Output is partially correct |
51 | Partially correct | 64 ms | 1632 KB | Output is partially correct |
52 | Partially correct | 64 ms | 1532 KB | Output is partially correct |
53 | Partially correct | 64 ms | 1384 KB | Output is partially correct |
54 | Partially correct | 66 ms | 1520 KB | Output is partially correct |
55 | Partially correct | 70 ms | 1324 KB | Output is partially correct |
56 | Partially correct | 64 ms | 1252 KB | Output is partially correct |
57 | Partially correct | 64 ms | 1384 KB | Output is partially correct |
58 | Partially correct | 66 ms | 1528 KB | Output is partially correct |
59 | Partially correct | 66 ms | 1520 KB | Output is partially correct |
60 | Partially correct | 68 ms | 1380 KB | Output is partially correct |
61 | Partially correct | 65 ms | 1384 KB | Output is partially correct |
62 | Partially correct | 69 ms | 1384 KB | Output is partially correct |
63 | Partially correct | 66 ms | 1268 KB | Output is partially correct |