Submission #1062803

# Submission time Handle Problem Language Result Execution time Memory
1062803 2024-08-17T10:55:15 Z ewirlan Comparing Plants (IOI20_plants) C++17
30 / 100
4000 ms 118612 KB
//
#ifndef __SIZEOF_INT128__
    #define __SIZEOF_INT128__
#endif
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace chrono;
using namespace __gnu_pbds;
template <typename T> using oset =  tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;
#define rep(i, p, k) for(int i(p); i < (k); ++i)
#define per(i, p, k) for(int i(p); i > (k); --i)
#define sz(x) (int)(x).size()
#define sc static_cast
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef __int128_t lll;
//#define int ll
template <typename T = int> using par = std::pair <T, T>;
#define fi first
#define se second
#define test int _number_of_tests(in()); while(_number_of_tests--)
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define pb emplace_back
struct Timer {
    string name{""};
    time_point<high_resolution_clock> end, start{high_resolution_clock::now()};
    duration<float, std::milli> dur;
    Timer() = default;
    Timer(string nm): name(nm) {}
    ~Timer() {
        end = high_resolution_clock::now(); dur= end - start;
        cout << "@" << name << "> " << dur.count() << " ms" << '\n';
    }
};
template <typename T = int> inline T in()
{
    static T x;
    std::cin >> x;
    return x;
}
std::string yn(bool b)
{
    if(b) return "YES\n";
    else return "NO\n";
}
template <typename F, typename S> std::ostream& operator<<(std::ostream& out, const std::pair <F, S>& par);
template <typename T> std::ostream& operator<< (std::ostream& out, const std::vector <T>& wek)
{
    for(const auto& i : wek)out << i << ' ';
    return out;
}
template <typename F, typename S> std::ostream& operator<<(std::ostream& out, const std::pair <F, S>& par)
{
    out << '{'<<par.first<<", "<<par.second<<"}";
    return out;
}
#define show(x) cerr << #x << " = " << x << '\n';
#include "plants.h"
constexpr int maxn = 2e5 + 3, maxk = 20, pol = 1<<18;
int ls[maxn][maxk], rs[maxn][maxk], ko[maxn];
ll ld[maxn][maxk], rd[maxn][maxk];
int n;
constexpr int tres = pol*2+3;
struct t2t{
    int m, g;
};
t2t operator+(t2t a, t2t b){ return (a.m < b.m) ? b : a; }
t2t t2[tres];
t2t t2s(int a, int b){
    t2t o{-1, n};
    a += pol-1; b += pol+1;
    while(a+1 != b){
        if(a % 2 == 0)o = o + t2[a+1];
        if(b % 2 == 1)o = o + t2[b-1];
        a /= 2; b /= 2;
    }
    return o;
}
int tre[tres], tre2[tres];
void upd(int w){
    tre[2*w] += tre2[w];
    tre2[2*w] += tre2[w];
    tre[2*w+1] += tre2[w];
    tre2[2*w+1] += tre2[w];
    tre2[w] = 0;
}
void add(int a, int b, int c, int p = 0, int k = pol-1, int w = 1){
    if(a > k || p > b)return;
    if(a <= p && k <= b){
        tre[w] += c;
        tre2[w] += c;
        return;
    }
    upd(w);
    add(a, b, c, p, (p+k)/2, w*2);
    add(a, b, c, (p+k)/2+1, k, w*2+1);
    tre[w] = min(tre[2*w], tre[2*w+1]);
}
int find(int p = 0, int k = pol-1, int w = 1){
    if(p == k)return p;
    upd(w);
    if(tre[w*2] == 0)return find(p, (p+k)/2, w*2);
    return find((p+k)/2+1, k, w*2+1);
}
void init(int k, vector <int> r)
{
    n = sz(r);
    rep(i, 0, tres)t2[i] = {-1, n};
    rep(i, 0, pol)tre[i+pol] = (i < n) ? r[i] : 1e9;
    per(i, pol-1, 0)tre[i] = min(tre[2*i], tre[2*i+1]);
    set <int> s;
    rep(c, 1, n+1){
        while(tre[1] == 0){
            int f(find());
            add(f, f, 1e9);
            s.insert(f);
        } 
        int a(-1);
        for(auto i: s){
            bool b(1);
            rep(j, 1, k)b &= !s.count((n+i-j)%n);
            if(b){
                s.erase(i);
                a = i;
                break;
            }
        }
        if(a-k+1 < 0){
            add(n+a-k+1, n-1, -1);
            add(0, a-1, -1);
        }
        else add(a-k+1, a-1, -1);
 
        auto [lm, lg] = (a-k+1 >= 0) ? t2s(a-k+1, a-1) : t2s(n+a-k+1, n-1) + t2s(0, a-1);
        ls[a][0] = lg;
        ld[a][0] = lg == n ? -1 : (n+a-lg)%n;
        auto [rm, rg] = (a+k-1 < n) ? t2s(a+1, a+k-1) : t2s(a, n-1) + t2s(0, a+k-1-n);
        rs[a][0] = rg;
        rd[a][0] = rg == n ? -1 : (n+rg-a)%n;
 
        r[a] = -c;
        ko[a] = c;
        int t2g(a+pol);
        t2[t2g] = {ko[a], a};
        while(t2g > 1){
            t2g /= 2;
            t2[t2g] = t2[t2g*2] + t2[t2g*2+1];
        }
    }
    ko[n] = -1;
    ls[n][0] = rs[n][0] = n;
    rep(k, 1, maxk)rep(i, 0, n+1){
        ls[i][k] = ls[ls[i][k-1]][k-1];
        ld[i][k] = ld[i][k-1] + ld[ls[i][k-1]][k-1];
    }
    rep(k, 1, maxk)rep(i, 0, n+1){
        rs[i][k] = rs[rs[i][k-1]][k-1];
        rd[i][k] = rd[i][k-1] + rd[rs[i][k-1]][k-1];
    }
}
int compare_plants(int x, int y)
{
    int m(1);
    if(ko[x] > ko[y]){
        swap(x, y);
        m = -1;
    }
    int z(y);
    ll d(0);
    per(k, maxk-1, -1){
        while(ko[ls[z][k]] >= ko[x]){
            d += ld[z][k];
            z = ls[z][k];
        }
    }
    if(x < y){
        if(y-d <= x)return m;
    }
    else{
        if(y-d <= x-n)return m;
    }
    z = y;
    d = 0;
    per(k, maxk-1, -1){
        while(ko[rs[z][k]] >= ko[x]){
            d += rd[z][k];
            z = rs[z][k];
        }
    }
    if(x < y){
        if(y+d >= x+n)return m;
    }
    else{
        if(y+d >= x)return m;
    }
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6744 KB Output is correct
2 Correct 2 ms 6748 KB Output is correct
3 Correct 2 ms 6796 KB Output is correct
4 Correct 2 ms 6748 KB Output is correct
5 Correct 1 ms 6748 KB Output is correct
6 Correct 43 ms 9464 KB Output is correct
7 Correct 83 ms 19184 KB Output is correct
8 Correct 359 ms 114300 KB Output is correct
9 Correct 300 ms 113688 KB Output is correct
10 Correct 336 ms 114040 KB Output is correct
11 Correct 330 ms 114352 KB Output is correct
12 Correct 352 ms 114212 KB Output is correct
13 Correct 363 ms 118612 KB Output is correct
14 Correct 364 ms 109164 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6748 KB Output is correct
2 Correct 2 ms 6748 KB Output is correct
3 Correct 1 ms 6748 KB Output is correct
4 Correct 2 ms 6648 KB Output is correct
5 Correct 4 ms 6744 KB Output is correct
6 Correct 6 ms 7260 KB Output is correct
7 Correct 113 ms 13676 KB Output is correct
8 Correct 4 ms 6744 KB Output is correct
9 Correct 7 ms 7260 KB Output is correct
10 Correct 146 ms 13680 KB Output is correct
11 Correct 180 ms 13648 KB Output is correct
12 Correct 88 ms 13908 KB Output is correct
13 Correct 152 ms 13628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6748 KB Output is correct
2 Correct 2 ms 6748 KB Output is correct
3 Correct 1 ms 6748 KB Output is correct
4 Correct 2 ms 6648 KB Output is correct
5 Correct 4 ms 6744 KB Output is correct
6 Correct 6 ms 7260 KB Output is correct
7 Correct 113 ms 13676 KB Output is correct
8 Correct 4 ms 6744 KB Output is correct
9 Correct 7 ms 7260 KB Output is correct
10 Correct 146 ms 13680 KB Output is correct
11 Correct 180 ms 13648 KB Output is correct
12 Correct 88 ms 13908 KB Output is correct
13 Correct 152 ms 13628 KB Output is correct
14 Correct 700 ms 21264 KB Output is correct
15 Execution timed out 4074 ms 98808 KB Time limit exceeded
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6748 KB Output is correct
2 Correct 2 ms 6748 KB Output is correct
3 Correct 62 ms 10496 KB Output is correct
4 Execution timed out 4043 ms 18764 KB Time limit exceeded
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6744 KB Output is correct
2 Correct 2 ms 6748 KB Output is correct
3 Correct 2 ms 6748 KB Output is correct
4 Correct 2 ms 6748 KB Output is correct
5 Correct 2 ms 6748 KB Output is correct
6 Correct 3 ms 6744 KB Output is correct
7 Correct 13 ms 7696 KB Output is correct
8 Correct 12 ms 7772 KB Output is correct
9 Correct 13 ms 7772 KB Output is correct
10 Correct 13 ms 7768 KB Output is correct
11 Correct 13 ms 7772 KB Output is correct
12 Correct 13 ms 7772 KB Output is correct
13 Correct 13 ms 7772 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6748 KB Output is correct
2 Correct 1 ms 6748 KB Output is correct
3 Correct 2 ms 6748 KB Output is correct
4 Correct 2 ms 6744 KB Output is correct
5 Correct 5 ms 7172 KB Output is correct
6 Execution timed out 4034 ms 40040 KB Time limit exceeded
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6744 KB Output is correct
2 Correct 2 ms 6748 KB Output is correct
3 Correct 2 ms 6796 KB Output is correct
4 Correct 2 ms 6748 KB Output is correct
5 Correct 1 ms 6748 KB Output is correct
6 Correct 43 ms 9464 KB Output is correct
7 Correct 83 ms 19184 KB Output is correct
8 Correct 359 ms 114300 KB Output is correct
9 Correct 300 ms 113688 KB Output is correct
10 Correct 336 ms 114040 KB Output is correct
11 Correct 330 ms 114352 KB Output is correct
12 Correct 352 ms 114212 KB Output is correct
13 Correct 363 ms 118612 KB Output is correct
14 Correct 364 ms 109164 KB Output is correct
15 Correct 2 ms 6748 KB Output is correct
16 Correct 2 ms 6748 KB Output is correct
17 Correct 1 ms 6748 KB Output is correct
18 Correct 2 ms 6648 KB Output is correct
19 Correct 4 ms 6744 KB Output is correct
20 Correct 6 ms 7260 KB Output is correct
21 Correct 113 ms 13676 KB Output is correct
22 Correct 4 ms 6744 KB Output is correct
23 Correct 7 ms 7260 KB Output is correct
24 Correct 146 ms 13680 KB Output is correct
25 Correct 180 ms 13648 KB Output is correct
26 Correct 88 ms 13908 KB Output is correct
27 Correct 152 ms 13628 KB Output is correct
28 Correct 700 ms 21264 KB Output is correct
29 Execution timed out 4074 ms 98808 KB Time limit exceeded
30 Halted 0 ms 0 KB -