Submission #1061460

# Submission time Handle Problem Language Result Execution time Memory
1061460 2024-08-16T09:18:49 Z TheQuantiX Fountain Parks (IOI21_parks) C++17
30 / 100
515 ms 49600 KB
#include<bits/stdc++.h>
#include "parks.h"

using namespace std;
using ll = long long;

ll n, m, q, k, x, y, a, b, c;

struct dsu {
    ll n;
    vector<ll> par;
    vector<ll> sz;
    
    dsu(ll N) : n(N) {
        par.resize(n);
        sz.resize(n);
        for (int i = 0; i < n; i++) {
            par[i] = i;
            sz[i] = 1;
        }
    }

    ll find_p(ll x) {
        if (par[x] == x) {
            return x;
        }
        ll p = find_p(par[x]);
        par[x] = p;
        return p;
    }

    void join(ll x, ll y) {
        x = find_p(x);
        y = find_p(y);
        if (x == y) {
            return;
        }
        if (sz[y] > sz[x]) {
            swap(x, y);
        }
        par[y] = x;
        sz[x] += sz[y];
    }
};

int construct_roads(vector<int> x, vector<int> y) {
    n = x.size();
    array< vector<int>, 4 > ans;
    if (*max_element(x.begin(), x.end()) <= 6) {
        vector< vector<ll> > v(7, vector<ll> (200001, -1));
        for (int i = 0; i < n; i++) {
            v[x[i]][y[i]] = i;
        }
        dsu d(n);
        for (int i = 2; i < 200000; i += 2) {
            if (v[2][i] != -1 && v[2][i + 2] != -1 && d.find_p(v[2][i]) != d.find_p(v[2][i + 2])) {
                d.join(v[2][i], v[2][i + 2]);
                ans[0].push_back(v[2][i]);
                ans[1].push_back(v[2][i + 2]);
                ans[2].push_back(1);
                ans[3].push_back(i + 1);
            }
            if (v[6][i] != -1 && v[6][i + 2] != -1 && d.find_p(v[6][i]) != d.find_p(v[6][i + 2])) {
                d.join(v[6][i], v[6][i + 2]);
                ans[0].push_back(v[6][i]);
                ans[1].push_back(v[6][i + 2]);
                ans[2].push_back(7);
                ans[3].push_back(i + 1);
            }
        }
        vector< pair< ll, pair<ll, ll> > > vec;
        for (int i = 2; i < 200000; i += 2) {
            if (v[4][i] != -1 && v[4][i + 2] != -1 && d.find_p(v[4][i]) != d.find_p(v[4][i + 2])) {
                d.join(v[4][i], v[4][i + 2]);
                vec.push_back({i + 1, {v[4][i], v[4][i + 2]}});
            }
        }
        for (int i = 2; i <= 200000; i += 2) {
            if (v[4][i] != -1 && v[2][i] != -1 && d.find_p(v[4][i]) != d.find_p(v[2][i])) {
                d.join(v[4][i], v[2][i]);
                vec.push_back({i, {v[4][i], v[2][i]}});
            }
            if (v[4][i] != -1 && v[6][i] != -1 && d.find_p(v[4][i]) != d.find_p(v[6][i])) {
                d.join(v[4][i], v[6][i]);
                vec.push_back({i, {v[4][i], v[6][i]}});
            }
        }
        set< pair<ll, ll> > st;
        sort(vec.begin(), vec.end());
        for (auto i : vec) {
            if (i.first % 2 == 0) {
                if (!st.count({(x[i.second.first] + x[i.second.second]) / 2, i.first - 1})) {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2, i.first - 1});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                    ans[3].push_back(i.first - 1);
                }
                else {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2, i.first + 1});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                    ans[3].push_back(i.first + 1);
                }
            }
            else {
                if (!st.count({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2})) {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 - 1);
                    ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
                }
                else {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2 + 1, (y[i.second.first] + y[i.second.second]) / 2});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 + 1);
                    ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
                }
            }
        }
        if (d.sz[d.find_p(0)] != n) {
            return 0;
        }
        build(ans[0], ans[1], ans[2], ans[3]);
        return 1;
    }
    map< pair<ll, ll>, ll > pts;
    for (int i = 0; i < n; i++) {
        pts[{x[i], y[i]}] = i;
    }
    dsu d(n);
    vector< pair< pair<ll, ll>, pair<ll, ll> > > vec;
    for (int i = 0; i < n; i++) {
        if (pts.count({x[i], y[i] - 2}) && d.find_p(i) != d.find_p(pts[{x[i], y[i] - 2}])) {
            d.join(i, pts[{x[i], y[i] - 2}]);
            vec.push_back({{x[i], y[i] - 1}, {i, pts[{x[i], y[i] - 2}]}});
        }
        if (pts.count({x[i], y[i] + 2}) && d.find_p(i) != d.find_p(pts[{x[i], y[i] + 2}])) {
            d.join(i, pts[{x[i], y[i] + 2}]);
            vec.push_back({{x[i], y[i] + 1}, {i, pts[{x[i], y[i] + 2}]}});
        }
        if (pts.count({x[i] - 2, y[i]}) && d.find_p(i) != d.find_p(pts[{x[i] - 2, y[i]}])) {
            d.join(i, pts[{x[i] - 2, y[i]}]);
            vec.push_back({{x[i] - 1, y[i]}, {i, pts[{x[i] - 2, y[i]}]}});
        }
        if (pts.count({x[i] + 2, y[i]}) && d.find_p(i) != d.find_p(pts[{x[i] + 2, y[i]}])) {
            d.join(i, pts[{x[i] + 2, y[i]}]);
            vec.push_back({{x[i] + 1, y[i]}, {i, pts[{x[i] + 2, y[i]}]}});
        }
    }
    set< pair<ll, ll> > st;
    sort(vec.begin(), vec.end());
    for (auto i : vec) {
        if (i.first.first % 2 == 0) {
            if (!st.count({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2})) {
                st.insert({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 - 1);
                ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
            }
            else if (!st.count({(x[i.second.first] + x[i.second.second]) / 2 + 1, (y[i.second.first] + y[i.second.second]) / 2})) {
                st.insert({(x[i.second.first] + x[i.second.second]) / 2 + 1, (y[i.second.first] + y[i.second.second]) / 2});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 + 1);
                ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
            }
            else {
                return 0;
            }
        }
        else {
            if (!st.count({(x[i.second.first] + x[i.second.second]) / 2, (y[i.second.first] + y[i.second.second]) / 2 - 1})) {
                st.insert({(x[i.second.first] + x[i.second.second]) / 2, (y[i.second.first] + y[i.second.second]) / 2 - 1});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2 - 1);
            }
            else if (!st.count({(x[i.second.first] + x[i.second.second]) / 2, (y[i.second.first] + y[i.second.second]) / 2 + 1})) {
                st.insert({(x[i.second.first] + x[i.second.second]) / 2, (y[i.second.first] + y[i.second.second]) / 2 + 1});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2 + 1);
            }
            else {
                return 0;
            }
        }
    }
    if (d.sz[d.find_p(0)] != n) {
        return 0;
    }
    build(ans[0], ans[1], ans[2], ans[3]);
    return 1;
}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 6 ms 12892 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 5 ms 12976 KB Output is correct
8 Correct 6 ms 12892 KB Output is correct
9 Correct 38 ms 19608 KB Output is correct
10 Correct 9 ms 12892 KB Output is correct
11 Correct 24 ms 15700 KB Output is correct
12 Correct 10 ms 13148 KB Output is correct
13 Correct 12 ms 13888 KB Output is correct
14 Correct 7 ms 12876 KB Output is correct
15 Correct 7 ms 12792 KB Output is correct
16 Correct 41 ms 19384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 6 ms 12892 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 5 ms 12976 KB Output is correct
8 Correct 6 ms 12892 KB Output is correct
9 Correct 38 ms 19608 KB Output is correct
10 Correct 9 ms 12892 KB Output is correct
11 Correct 24 ms 15700 KB Output is correct
12 Correct 10 ms 13148 KB Output is correct
13 Correct 12 ms 13888 KB Output is correct
14 Correct 7 ms 12876 KB Output is correct
15 Correct 7 ms 12792 KB Output is correct
16 Correct 41 ms 19384 KB Output is correct
17 Correct 6 ms 12888 KB Output is correct
18 Correct 6 ms 12892 KB Output is correct
19 Correct 6 ms 12892 KB Output is correct
20 Correct 6 ms 12948 KB Output is correct
21 Correct 5 ms 12892 KB Output is correct
22 Correct 7 ms 12916 KB Output is correct
23 Correct 103 ms 36792 KB Output is correct
24 Correct 5 ms 12888 KB Output is correct
25 Correct 6 ms 12892 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 6 ms 12892 KB Output is correct
28 Correct 48 ms 21108 KB Output is correct
29 Correct 73 ms 25908 KB Output is correct
30 Correct 92 ms 31540 KB Output is correct
31 Correct 107 ms 36152 KB Output is correct
32 Correct 6 ms 12892 KB Output is correct
33 Correct 7 ms 12892 KB Output is correct
34 Correct 5 ms 12888 KB Output is correct
35 Correct 6 ms 12892 KB Output is correct
36 Correct 6 ms 12892 KB Output is correct
37 Correct 5 ms 12892 KB Output is correct
38 Correct 6 ms 12892 KB Output is correct
39 Correct 6 ms 12892 KB Output is correct
40 Correct 6 ms 12888 KB Output is correct
41 Correct 6 ms 12892 KB Output is correct
42 Correct 5 ms 12892 KB Output is correct
43 Correct 6 ms 12888 KB Output is correct
44 Correct 7 ms 12888 KB Output is correct
45 Correct 54 ms 25820 KB Output is correct
46 Correct 77 ms 31540 KB Output is correct
47 Correct 76 ms 31800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 6 ms 12892 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 5 ms 12976 KB Output is correct
8 Correct 6 ms 12892 KB Output is correct
9 Correct 38 ms 19608 KB Output is correct
10 Correct 9 ms 12892 KB Output is correct
11 Correct 24 ms 15700 KB Output is correct
12 Correct 10 ms 13148 KB Output is correct
13 Correct 12 ms 13888 KB Output is correct
14 Correct 7 ms 12876 KB Output is correct
15 Correct 7 ms 12792 KB Output is correct
16 Correct 41 ms 19384 KB Output is correct
17 Correct 6 ms 12888 KB Output is correct
18 Correct 6 ms 12892 KB Output is correct
19 Correct 6 ms 12892 KB Output is correct
20 Correct 6 ms 12948 KB Output is correct
21 Correct 5 ms 12892 KB Output is correct
22 Correct 7 ms 12916 KB Output is correct
23 Correct 103 ms 36792 KB Output is correct
24 Correct 5 ms 12888 KB Output is correct
25 Correct 6 ms 12892 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 6 ms 12892 KB Output is correct
28 Correct 48 ms 21108 KB Output is correct
29 Correct 73 ms 25908 KB Output is correct
30 Correct 92 ms 31540 KB Output is correct
31 Correct 107 ms 36152 KB Output is correct
32 Correct 6 ms 12892 KB Output is correct
33 Correct 7 ms 12892 KB Output is correct
34 Correct 5 ms 12888 KB Output is correct
35 Correct 6 ms 12892 KB Output is correct
36 Correct 6 ms 12892 KB Output is correct
37 Correct 5 ms 12892 KB Output is correct
38 Correct 6 ms 12892 KB Output is correct
39 Correct 6 ms 12892 KB Output is correct
40 Correct 6 ms 12888 KB Output is correct
41 Correct 6 ms 12892 KB Output is correct
42 Correct 5 ms 12892 KB Output is correct
43 Correct 6 ms 12888 KB Output is correct
44 Correct 7 ms 12888 KB Output is correct
45 Correct 54 ms 25820 KB Output is correct
46 Correct 77 ms 31540 KB Output is correct
47 Correct 76 ms 31800 KB Output is correct
48 Correct 6 ms 12892 KB Output is correct
49 Correct 6 ms 12892 KB Output is correct
50 Correct 6 ms 12892 KB Output is correct
51 Correct 5 ms 12892 KB Output is correct
52 Correct 5 ms 12892 KB Output is correct
53 Correct 5 ms 12892 KB Output is correct
54 Correct 6 ms 12892 KB Output is correct
55 Correct 96 ms 32988 KB Output is correct
56 Correct 6 ms 12888 KB Output is correct
57 Correct 6 ms 12892 KB Output is correct
58 Correct 8 ms 13024 KB Output is correct
59 Correct 7 ms 12892 KB Output is correct
60 Correct 45 ms 22200 KB Output is correct
61 Correct 59 ms 26944 KB Output is correct
62 Correct 73 ms 29240 KB Output is correct
63 Correct 100 ms 32824 KB Output is correct
64 Correct 6 ms 12892 KB Output is correct
65 Correct 6 ms 12892 KB Output is correct
66 Correct 5 ms 12892 KB Output is correct
67 Correct 72 ms 27704 KB Output is correct
68 Correct 80 ms 27704 KB Output is correct
69 Correct 70 ms 27516 KB Output is correct
70 Correct 8 ms 12888 KB Output is correct
71 Correct 9 ms 12892 KB Output is correct
72 Correct 50 ms 23836 KB Output is correct
73 Correct 70 ms 30776 KB Output is correct
74 Correct 97 ms 36404 KB Output is correct
75 Correct 82 ms 30516 KB Output is correct
76 Correct 75 ms 27700 KB Output is correct
77 Correct 7 ms 12892 KB Output is correct
78 Correct 8 ms 13048 KB Output is correct
79 Correct 49 ms 23348 KB Output is correct
80 Correct 68 ms 30516 KB Output is correct
81 Correct 98 ms 35636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 6 ms 12892 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 5 ms 12976 KB Output is correct
8 Correct 6 ms 12892 KB Output is correct
9 Correct 38 ms 19608 KB Output is correct
10 Correct 9 ms 12892 KB Output is correct
11 Correct 24 ms 15700 KB Output is correct
12 Correct 10 ms 13148 KB Output is correct
13 Correct 12 ms 13888 KB Output is correct
14 Correct 7 ms 12876 KB Output is correct
15 Correct 7 ms 12792 KB Output is correct
16 Correct 41 ms 19384 KB Output is correct
17 Correct 1 ms 600 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 515 ms 47900 KB Output is correct
21 Correct 507 ms 49124 KB Output is correct
22 Correct 502 ms 48564 KB Output is correct
23 Correct 364 ms 42164 KB Output is correct
24 Correct 228 ms 19200 KB Output is correct
25 Correct 484 ms 42944 KB Output is correct
26 Correct 434 ms 42704 KB Output is correct
27 Correct 476 ms 47804 KB Output is correct
28 Correct 478 ms 49068 KB Output is correct
29 Correct 508 ms 47692 KB Output is correct
30 Correct 514 ms 48096 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Incorrect 19 ms 2364 KB Solution announced impossible, but it is possible.
33 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 6 ms 12892 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 5 ms 12976 KB Output is correct
8 Correct 6 ms 12892 KB Output is correct
9 Correct 38 ms 19608 KB Output is correct
10 Correct 9 ms 12892 KB Output is correct
11 Correct 24 ms 15700 KB Output is correct
12 Correct 10 ms 13148 KB Output is correct
13 Correct 12 ms 13888 KB Output is correct
14 Correct 7 ms 12876 KB Output is correct
15 Correct 7 ms 12792 KB Output is correct
16 Correct 41 ms 19384 KB Output is correct
17 Correct 430 ms 49344 KB Output is correct
18 Correct 425 ms 49600 KB Output is correct
19 Incorrect 419 ms 42676 KB Solution announced impossible, but it is possible.
20 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 6 ms 12892 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 5 ms 12976 KB Output is correct
8 Correct 6 ms 12892 KB Output is correct
9 Correct 38 ms 19608 KB Output is correct
10 Correct 9 ms 12892 KB Output is correct
11 Correct 24 ms 15700 KB Output is correct
12 Correct 10 ms 13148 KB Output is correct
13 Correct 12 ms 13888 KB Output is correct
14 Correct 7 ms 12876 KB Output is correct
15 Correct 7 ms 12792 KB Output is correct
16 Correct 41 ms 19384 KB Output is correct
17 Correct 6 ms 12888 KB Output is correct
18 Correct 6 ms 12892 KB Output is correct
19 Correct 6 ms 12892 KB Output is correct
20 Correct 6 ms 12948 KB Output is correct
21 Correct 5 ms 12892 KB Output is correct
22 Correct 7 ms 12916 KB Output is correct
23 Correct 103 ms 36792 KB Output is correct
24 Correct 5 ms 12888 KB Output is correct
25 Correct 6 ms 12892 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 6 ms 12892 KB Output is correct
28 Correct 48 ms 21108 KB Output is correct
29 Correct 73 ms 25908 KB Output is correct
30 Correct 92 ms 31540 KB Output is correct
31 Correct 107 ms 36152 KB Output is correct
32 Correct 6 ms 12892 KB Output is correct
33 Correct 7 ms 12892 KB Output is correct
34 Correct 5 ms 12888 KB Output is correct
35 Correct 6 ms 12892 KB Output is correct
36 Correct 6 ms 12892 KB Output is correct
37 Correct 5 ms 12892 KB Output is correct
38 Correct 6 ms 12892 KB Output is correct
39 Correct 6 ms 12892 KB Output is correct
40 Correct 6 ms 12888 KB Output is correct
41 Correct 6 ms 12892 KB Output is correct
42 Correct 5 ms 12892 KB Output is correct
43 Correct 6 ms 12888 KB Output is correct
44 Correct 7 ms 12888 KB Output is correct
45 Correct 54 ms 25820 KB Output is correct
46 Correct 77 ms 31540 KB Output is correct
47 Correct 76 ms 31800 KB Output is correct
48 Correct 6 ms 12892 KB Output is correct
49 Correct 6 ms 12892 KB Output is correct
50 Correct 6 ms 12892 KB Output is correct
51 Correct 5 ms 12892 KB Output is correct
52 Correct 5 ms 12892 KB Output is correct
53 Correct 5 ms 12892 KB Output is correct
54 Correct 6 ms 12892 KB Output is correct
55 Correct 96 ms 32988 KB Output is correct
56 Correct 6 ms 12888 KB Output is correct
57 Correct 6 ms 12892 KB Output is correct
58 Correct 8 ms 13024 KB Output is correct
59 Correct 7 ms 12892 KB Output is correct
60 Correct 45 ms 22200 KB Output is correct
61 Correct 59 ms 26944 KB Output is correct
62 Correct 73 ms 29240 KB Output is correct
63 Correct 100 ms 32824 KB Output is correct
64 Correct 6 ms 12892 KB Output is correct
65 Correct 6 ms 12892 KB Output is correct
66 Correct 5 ms 12892 KB Output is correct
67 Correct 72 ms 27704 KB Output is correct
68 Correct 80 ms 27704 KB Output is correct
69 Correct 70 ms 27516 KB Output is correct
70 Correct 8 ms 12888 KB Output is correct
71 Correct 9 ms 12892 KB Output is correct
72 Correct 50 ms 23836 KB Output is correct
73 Correct 70 ms 30776 KB Output is correct
74 Correct 97 ms 36404 KB Output is correct
75 Correct 82 ms 30516 KB Output is correct
76 Correct 75 ms 27700 KB Output is correct
77 Correct 7 ms 12892 KB Output is correct
78 Correct 8 ms 13048 KB Output is correct
79 Correct 49 ms 23348 KB Output is correct
80 Correct 68 ms 30516 KB Output is correct
81 Correct 98 ms 35636 KB Output is correct
82 Correct 1 ms 600 KB Output is correct
83 Correct 0 ms 348 KB Output is correct
84 Correct 0 ms 348 KB Output is correct
85 Correct 515 ms 47900 KB Output is correct
86 Correct 507 ms 49124 KB Output is correct
87 Correct 502 ms 48564 KB Output is correct
88 Correct 364 ms 42164 KB Output is correct
89 Correct 228 ms 19200 KB Output is correct
90 Correct 484 ms 42944 KB Output is correct
91 Correct 434 ms 42704 KB Output is correct
92 Correct 476 ms 47804 KB Output is correct
93 Correct 478 ms 49068 KB Output is correct
94 Correct 508 ms 47692 KB Output is correct
95 Correct 514 ms 48096 KB Output is correct
96 Correct 0 ms 348 KB Output is correct
97 Incorrect 19 ms 2364 KB Solution announced impossible, but it is possible.
98 Halted 0 ms 0 KB -