Submission #1061457

# Submission time Handle Problem Language Result Execution time Memory
1061457 2024-08-16T09:17:08 Z TheQuantiX Fountain Parks (IOI21_parks) C++17
30 / 100
553 ms 50872 KB
#include<bits/stdc++.h>
#include "parks.h"

using namespace std;
using ll = long long;

ll n, m, q, k, x, y, a, b, c;

struct dsu {
    ll n;
    vector<ll> par;
    vector<ll> sz;
    
    dsu(ll N) : n(N) {
        par.resize(n);
        sz.resize(n);
        for (int i = 0; i < n; i++) {
            par[i] = i;
            sz[i] = 1;
        }
    }

    ll find_p(ll x) {
        if (par[x] == x) {
            return x;
        }
        ll p = find_p(par[x]);
        par[x] = p;
        return p;
    }

    void join(ll x, ll y) {
        x = find_p(x);
        y = find_p(y);
        if (x == y) {
            return;
        }
        if (sz[y] > sz[x]) {
            swap(x, y);
        }
        par[y] = x;
        sz[x] += sz[y];
    }
};

int construct_roads(vector<int> x, vector<int> y) {
    n = x.size();
    array< vector<int>, 4 > ans;
    if (*max_element(x.begin(), x.end()) <= 6) {
        vector< vector<ll> > v(7, vector<ll> (200001, -1));
        for (int i = 0; i < n; i++) {
            v[x[i]][y[i]] = i;
        }
        dsu d(n);
        for (int i = 2; i < 200000; i += 2) {
            if (v[2][i] != -1 && v[2][i + 2] != -1 && d.find_p(v[2][i]) != d.find_p(v[2][i + 2])) {
                d.join(v[2][i], v[2][i + 2]);
                ans[0].push_back(v[2][i]);
                ans[1].push_back(v[2][i + 2]);
                ans[2].push_back(1);
                ans[3].push_back(i + 1);
            }
            if (v[6][i] != -1 && v[6][i + 2] != -1 && d.find_p(v[6][i]) != d.find_p(v[6][i + 2])) {
                d.join(v[6][i], v[6][i + 2]);
                ans[0].push_back(v[6][i]);
                ans[1].push_back(v[6][i + 2]);
                ans[2].push_back(7);
                ans[3].push_back(i + 1);
            }
        }
        vector< pair< ll, pair<ll, ll> > > vec;
        for (int i = 2; i < 200000; i += 2) {
            if (v[4][i] != -1 && v[4][i + 2] != -1 && d.find_p(v[4][i]) != d.find_p(v[4][i + 2])) {
                d.join(v[4][i], v[4][i + 2]);
                vec.push_back({i + 1, {v[4][i], v[4][i + 2]}});
            }
        }
        for (int i = 2; i <= 200000; i += 2) {
            if (v[4][i] != -1 && v[2][i] != -1 && d.find_p(v[4][i]) != d.find_p(v[2][i])) {
                d.join(v[4][i], v[2][i]);
                vec.push_back({i, {v[4][i], v[2][i]}});
            }
            if (v[4][i] != -1 && v[6][i] != -1 && d.find_p(v[4][i]) != d.find_p(v[6][i])) {
                d.join(v[4][i], v[6][i]);
                vec.push_back({i, {v[4][i], v[6][i]}});
            }
        }
        set< pair<ll, ll> > st;
        sort(vec.begin(), vec.end());
        for (auto i : vec) {
            if (i.first % 2 == 0) {
                if (!st.count({(x[i.second.first] + x[i.second.second]) / 2, i.first - 1})) {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2, i.first - 1});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                    ans[3].push_back(i.first - 1);
                }
                else {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2, i.first + 1});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                    ans[3].push_back(i.first + 1);
                }
            }
            else {
                if (!st.count({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2})) {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 - 1);
                    ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
                }
                else {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2 + 1, (y[i.second.first] + y[i.second.second]) / 2});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 + 1);
                    ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
                }
            }
        }
        if (d.sz[d.find_p(0)] != n) {
            return 0;
        }
        build(ans[0], ans[1], ans[2], ans[3]);
        return 1;
    }
    map< pair<ll, ll>, ll > pts;
    for (int i = 0; i < n; i++) {
        pts[{x[i], y[i]}] = i;
    }
    dsu d(n);
    vector< pair< pair<ll, ll>, pair<ll, ll> > > vec;
    for (int i = 0; i < n; i++) {
        if (pts.count({x[i], y[i] - 2}) && d.find_p(i) != d.find_p(pts[{x[i], y[i] - 2}])) {
            d.join(i, pts[{x[i], y[i] - 2}]);
            vec.push_back({{x[i], y[i] - 1}, {i, pts[{x[i], y[i] - 2}]}});
        }
        if (pts.count({x[i], y[i] + 2}) && d.find_p(i) != d.find_p(pts[{x[i], y[i] + 2}])) {
            d.join(i, pts[{x[i], y[i] + 2}]);
            vec.push_back({{x[i], y[i] + 1}, {i, pts[{x[i], y[i] + 2}]}});
        }
        if (pts.count({x[i] - 2, y[i]}) && d.find_p(i) != d.find_p(pts[{x[i] - 2, y[i]}])) {
            d.join(i, pts[{x[i] - 2, y[i]}]);
            vec.push_back({{x[i] - 1, y[i]}, {i, pts[{x[i] - 2, y[i]}]}});
        }
        if (pts.count({x[i] + 2, y[i]}) && d.find_p(i) != d.find_p(pts[{x[i] + 2, y[i]}])) {
            d.join(i, pts[{x[i] + 2, y[i]}]);
            vec.push_back({{x[i] + 1, y[i]}, {i, pts[{x[i] + 2, y[i]}]}});
        }
    }
    set< pair<ll, ll> > st;
    sort(vec.begin(), vec.end());
    for (auto i : vec) {
        if (i.first.first % 2 == 0) {
            if (!st.count({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2})) {
                st.insert({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 - 1);
                ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
            }
            else {
                st.insert({(x[i.second.first] + x[i.second.second]) / 2 + 1, (y[i.second.first] + y[i.second.second]) / 2});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 + 1);
                ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
            }
        }
        else {
            if (!st.count({(x[i.second.first] + x[i.second.second]) / 2, (y[i.second.first] + y[i.second.second]) / 2 - 1})) {
                st.insert({(x[i.second.first] + x[i.second.second]) / 2, (y[i.second.first] + y[i.second.second]) / 2 - 1});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2 - 1);
            }
            else {
                st.insert({(x[i.second.first] + x[i.second.second]) / 2, (y[i.second.first] + y[i.second.second]) / 2 + 1});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2 + 1);
            }
        }
    }
    if (d.sz[d.find_p(0)] != n) {
        return 0;
    }
    build(ans[0], ans[1], ans[2], ans[3]);
    return 1;
}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 6 ms 12892 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12888 KB Output is correct
7 Correct 6 ms 12892 KB Output is correct
8 Correct 5 ms 12892 KB Output is correct
9 Correct 36 ms 19520 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 24 ms 15676 KB Output is correct
12 Correct 12 ms 13148 KB Output is correct
13 Correct 11 ms 13996 KB Output is correct
14 Correct 7 ms 12888 KB Output is correct
15 Correct 7 ms 12892 KB Output is correct
16 Correct 40 ms 19372 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 6 ms 12892 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12888 KB Output is correct
7 Correct 6 ms 12892 KB Output is correct
8 Correct 5 ms 12892 KB Output is correct
9 Correct 36 ms 19520 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 24 ms 15676 KB Output is correct
12 Correct 12 ms 13148 KB Output is correct
13 Correct 11 ms 13996 KB Output is correct
14 Correct 7 ms 12888 KB Output is correct
15 Correct 7 ms 12892 KB Output is correct
16 Correct 40 ms 19372 KB Output is correct
17 Correct 6 ms 12892 KB Output is correct
18 Correct 5 ms 12892 KB Output is correct
19 Correct 5 ms 12932 KB Output is correct
20 Correct 5 ms 12892 KB Output is correct
21 Correct 5 ms 12892 KB Output is correct
22 Correct 5 ms 12892 KB Output is correct
23 Correct 109 ms 36152 KB Output is correct
24 Correct 6 ms 12888 KB Output is correct
25 Correct 6 ms 12888 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 7 ms 12892 KB Output is correct
28 Correct 42 ms 21168 KB Output is correct
29 Correct 62 ms 25908 KB Output is correct
30 Correct 87 ms 31032 KB Output is correct
31 Correct 107 ms 36408 KB Output is correct
32 Correct 5 ms 12888 KB Output is correct
33 Correct 5 ms 12892 KB Output is correct
34 Correct 5 ms 12892 KB Output is correct
35 Correct 5 ms 12892 KB Output is correct
36 Correct 6 ms 12888 KB Output is correct
37 Correct 6 ms 12892 KB Output is correct
38 Correct 6 ms 12888 KB Output is correct
39 Correct 5 ms 12892 KB Output is correct
40 Correct 5 ms 13144 KB Output is correct
41 Correct 5 ms 12892 KB Output is correct
42 Correct 5 ms 12888 KB Output is correct
43 Correct 6 ms 12892 KB Output is correct
44 Correct 6 ms 12892 KB Output is correct
45 Correct 50 ms 25064 KB Output is correct
46 Correct 74 ms 31540 KB Output is correct
47 Correct 89 ms 31540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 6 ms 12892 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12888 KB Output is correct
7 Correct 6 ms 12892 KB Output is correct
8 Correct 5 ms 12892 KB Output is correct
9 Correct 36 ms 19520 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 24 ms 15676 KB Output is correct
12 Correct 12 ms 13148 KB Output is correct
13 Correct 11 ms 13996 KB Output is correct
14 Correct 7 ms 12888 KB Output is correct
15 Correct 7 ms 12892 KB Output is correct
16 Correct 40 ms 19372 KB Output is correct
17 Correct 6 ms 12892 KB Output is correct
18 Correct 5 ms 12892 KB Output is correct
19 Correct 5 ms 12932 KB Output is correct
20 Correct 5 ms 12892 KB Output is correct
21 Correct 5 ms 12892 KB Output is correct
22 Correct 5 ms 12892 KB Output is correct
23 Correct 109 ms 36152 KB Output is correct
24 Correct 6 ms 12888 KB Output is correct
25 Correct 6 ms 12888 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 7 ms 12892 KB Output is correct
28 Correct 42 ms 21168 KB Output is correct
29 Correct 62 ms 25908 KB Output is correct
30 Correct 87 ms 31032 KB Output is correct
31 Correct 107 ms 36408 KB Output is correct
32 Correct 5 ms 12888 KB Output is correct
33 Correct 5 ms 12892 KB Output is correct
34 Correct 5 ms 12892 KB Output is correct
35 Correct 5 ms 12892 KB Output is correct
36 Correct 6 ms 12888 KB Output is correct
37 Correct 6 ms 12892 KB Output is correct
38 Correct 6 ms 12888 KB Output is correct
39 Correct 5 ms 12892 KB Output is correct
40 Correct 5 ms 13144 KB Output is correct
41 Correct 5 ms 12892 KB Output is correct
42 Correct 5 ms 12888 KB Output is correct
43 Correct 6 ms 12892 KB Output is correct
44 Correct 6 ms 12892 KB Output is correct
45 Correct 50 ms 25064 KB Output is correct
46 Correct 74 ms 31540 KB Output is correct
47 Correct 89 ms 31540 KB Output is correct
48 Correct 5 ms 12888 KB Output is correct
49 Correct 6 ms 12892 KB Output is correct
50 Correct 6 ms 12892 KB Output is correct
51 Correct 5 ms 12892 KB Output is correct
52 Correct 7 ms 12940 KB Output is correct
53 Correct 6 ms 12892 KB Output is correct
54 Correct 6 ms 12892 KB Output is correct
55 Correct 99 ms 33744 KB Output is correct
56 Correct 5 ms 12888 KB Output is correct
57 Correct 6 ms 12892 KB Output is correct
58 Correct 8 ms 12888 KB Output is correct
59 Correct 7 ms 13068 KB Output is correct
60 Correct 45 ms 22220 KB Output is correct
61 Correct 60 ms 26932 KB Output is correct
62 Correct 76 ms 29236 KB Output is correct
63 Correct 95 ms 34100 KB Output is correct
64 Correct 6 ms 12888 KB Output is correct
65 Correct 6 ms 12888 KB Output is correct
66 Correct 5 ms 13140 KB Output is correct
67 Correct 69 ms 27648 KB Output is correct
68 Correct 72 ms 27704 KB Output is correct
69 Correct 75 ms 27700 KB Output is correct
70 Correct 7 ms 12892 KB Output is correct
71 Correct 9 ms 12864 KB Output is correct
72 Correct 52 ms 23840 KB Output is correct
73 Correct 76 ms 30412 KB Output is correct
74 Correct 96 ms 36408 KB Output is correct
75 Correct 81 ms 30648 KB Output is correct
76 Correct 70 ms 27708 KB Output is correct
77 Correct 8 ms 12888 KB Output is correct
78 Correct 9 ms 12892 KB Output is correct
79 Correct 47 ms 23196 KB Output is correct
80 Correct 72 ms 29240 KB Output is correct
81 Correct 98 ms 35128 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 6 ms 12892 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12888 KB Output is correct
7 Correct 6 ms 12892 KB Output is correct
8 Correct 5 ms 12892 KB Output is correct
9 Correct 36 ms 19520 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 24 ms 15676 KB Output is correct
12 Correct 12 ms 13148 KB Output is correct
13 Correct 11 ms 13996 KB Output is correct
14 Correct 7 ms 12888 KB Output is correct
15 Correct 7 ms 12892 KB Output is correct
16 Correct 40 ms 19372 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 445 ms 49300 KB Output is correct
21 Correct 469 ms 50100 KB Output is correct
22 Correct 450 ms 50868 KB Output is correct
23 Correct 349 ms 44208 KB Output is correct
24 Correct 216 ms 20820 KB Output is correct
25 Correct 490 ms 43452 KB Output is correct
26 Correct 432 ms 43480 KB Output is correct
27 Correct 479 ms 49712 KB Output is correct
28 Correct 506 ms 49336 KB Output is correct
29 Correct 501 ms 49740 KB Output is correct
30 Correct 553 ms 50724 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Incorrect 24 ms 3872 KB Tree @(185725, 20413) appears more than once: for edges on positions 631 and 647
33 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 6 ms 12892 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12888 KB Output is correct
7 Correct 6 ms 12892 KB Output is correct
8 Correct 5 ms 12892 KB Output is correct
9 Correct 36 ms 19520 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 24 ms 15676 KB Output is correct
12 Correct 12 ms 13148 KB Output is correct
13 Correct 11 ms 13996 KB Output is correct
14 Correct 7 ms 12888 KB Output is correct
15 Correct 7 ms 12892 KB Output is correct
16 Correct 40 ms 19372 KB Output is correct
17 Correct 437 ms 48568 KB Output is correct
18 Correct 446 ms 48320 KB Output is correct
19 Incorrect 529 ms 50872 KB Tree @(100001, 50003) appears more than once: for edges on positions 199993 and 199994
20 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12888 KB Output is correct
2 Correct 5 ms 12892 KB Output is correct
3 Correct 5 ms 12892 KB Output is correct
4 Correct 6 ms 12892 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12888 KB Output is correct
7 Correct 6 ms 12892 KB Output is correct
8 Correct 5 ms 12892 KB Output is correct
9 Correct 36 ms 19520 KB Output is correct
10 Correct 8 ms 12888 KB Output is correct
11 Correct 24 ms 15676 KB Output is correct
12 Correct 12 ms 13148 KB Output is correct
13 Correct 11 ms 13996 KB Output is correct
14 Correct 7 ms 12888 KB Output is correct
15 Correct 7 ms 12892 KB Output is correct
16 Correct 40 ms 19372 KB Output is correct
17 Correct 6 ms 12892 KB Output is correct
18 Correct 5 ms 12892 KB Output is correct
19 Correct 5 ms 12932 KB Output is correct
20 Correct 5 ms 12892 KB Output is correct
21 Correct 5 ms 12892 KB Output is correct
22 Correct 5 ms 12892 KB Output is correct
23 Correct 109 ms 36152 KB Output is correct
24 Correct 6 ms 12888 KB Output is correct
25 Correct 6 ms 12888 KB Output is correct
26 Correct 6 ms 12892 KB Output is correct
27 Correct 7 ms 12892 KB Output is correct
28 Correct 42 ms 21168 KB Output is correct
29 Correct 62 ms 25908 KB Output is correct
30 Correct 87 ms 31032 KB Output is correct
31 Correct 107 ms 36408 KB Output is correct
32 Correct 5 ms 12888 KB Output is correct
33 Correct 5 ms 12892 KB Output is correct
34 Correct 5 ms 12892 KB Output is correct
35 Correct 5 ms 12892 KB Output is correct
36 Correct 6 ms 12888 KB Output is correct
37 Correct 6 ms 12892 KB Output is correct
38 Correct 6 ms 12888 KB Output is correct
39 Correct 5 ms 12892 KB Output is correct
40 Correct 5 ms 13144 KB Output is correct
41 Correct 5 ms 12892 KB Output is correct
42 Correct 5 ms 12888 KB Output is correct
43 Correct 6 ms 12892 KB Output is correct
44 Correct 6 ms 12892 KB Output is correct
45 Correct 50 ms 25064 KB Output is correct
46 Correct 74 ms 31540 KB Output is correct
47 Correct 89 ms 31540 KB Output is correct
48 Correct 5 ms 12888 KB Output is correct
49 Correct 6 ms 12892 KB Output is correct
50 Correct 6 ms 12892 KB Output is correct
51 Correct 5 ms 12892 KB Output is correct
52 Correct 7 ms 12940 KB Output is correct
53 Correct 6 ms 12892 KB Output is correct
54 Correct 6 ms 12892 KB Output is correct
55 Correct 99 ms 33744 KB Output is correct
56 Correct 5 ms 12888 KB Output is correct
57 Correct 6 ms 12892 KB Output is correct
58 Correct 8 ms 12888 KB Output is correct
59 Correct 7 ms 13068 KB Output is correct
60 Correct 45 ms 22220 KB Output is correct
61 Correct 60 ms 26932 KB Output is correct
62 Correct 76 ms 29236 KB Output is correct
63 Correct 95 ms 34100 KB Output is correct
64 Correct 6 ms 12888 KB Output is correct
65 Correct 6 ms 12888 KB Output is correct
66 Correct 5 ms 13140 KB Output is correct
67 Correct 69 ms 27648 KB Output is correct
68 Correct 72 ms 27704 KB Output is correct
69 Correct 75 ms 27700 KB Output is correct
70 Correct 7 ms 12892 KB Output is correct
71 Correct 9 ms 12864 KB Output is correct
72 Correct 52 ms 23840 KB Output is correct
73 Correct 76 ms 30412 KB Output is correct
74 Correct 96 ms 36408 KB Output is correct
75 Correct 81 ms 30648 KB Output is correct
76 Correct 70 ms 27708 KB Output is correct
77 Correct 8 ms 12888 KB Output is correct
78 Correct 9 ms 12892 KB Output is correct
79 Correct 47 ms 23196 KB Output is correct
80 Correct 72 ms 29240 KB Output is correct
81 Correct 98 ms 35128 KB Output is correct
82 Correct 0 ms 348 KB Output is correct
83 Correct 0 ms 348 KB Output is correct
84 Correct 0 ms 348 KB Output is correct
85 Correct 445 ms 49300 KB Output is correct
86 Correct 469 ms 50100 KB Output is correct
87 Correct 450 ms 50868 KB Output is correct
88 Correct 349 ms 44208 KB Output is correct
89 Correct 216 ms 20820 KB Output is correct
90 Correct 490 ms 43452 KB Output is correct
91 Correct 432 ms 43480 KB Output is correct
92 Correct 479 ms 49712 KB Output is correct
93 Correct 506 ms 49336 KB Output is correct
94 Correct 501 ms 49740 KB Output is correct
95 Correct 553 ms 50724 KB Output is correct
96 Correct 0 ms 348 KB Output is correct
97 Incorrect 24 ms 3872 KB Tree @(185725, 20413) appears more than once: for edges on positions 631 and 647
98 Halted 0 ms 0 KB -