Submission #1061454

# Submission time Handle Problem Language Result Execution time Memory
1061454 2024-08-16T09:15:13 Z TheQuantiX Fountain Parks (IOI21_parks) C++17
30 / 100
470 ms 50892 KB
#include<bits/stdc++.h>
#include "parks.h"

using namespace std;
using ll = long long;

ll n, m, q, k, x, y, a, b, c;

struct dsu {
    ll n;
    vector<ll> par;
    vector<ll> sz;
    
    dsu(ll N) : n(N) {
        par.resize(n);
        sz.resize(n);
        for (int i = 0; i < n; i++) {
            par[i] = i;
            sz[i] = 1;
        }
    }

    ll find_p(ll x) {
        if (par[x] == x) {
            return x;
        }
        ll p = find_p(par[x]);
        par[x] = p;
        return p;
    }

    void join(ll x, ll y) {
        x = find_p(x);
        y = find_p(y);
        if (x == y) {
            return;
        }
        if (sz[y] > sz[x]) {
            swap(x, y);
        }
        par[y] = x;
        sz[x] += sz[y];
    }
};

int construct_roads(vector<int> x, vector<int> y) {
    n = x.size();
    array< vector<int>, 4 > ans;
    if (*max_element(x.begin(), x.end()) <= 6) {
        vector< vector<ll> > v(7, vector<ll> (200001, -1));
        for (int i = 0; i < n; i++) {
            v[x[i]][y[i]] = i;
        }
        dsu d(n);
        for (int i = 2; i < 200000; i += 2) {
            if (v[2][i] != -1 && v[2][i + 2] != -1 && d.find_p(v[2][i]) != d.find_p(v[2][i + 2])) {
                d.join(v[2][i], v[2][i + 2]);
                ans[0].push_back(v[2][i]);
                ans[1].push_back(v[2][i + 2]);
                ans[2].push_back(1);
                ans[3].push_back(i + 1);
            }
            if (v[6][i] != -1 && v[6][i + 2] != -1 && d.find_p(v[6][i]) != d.find_p(v[6][i + 2])) {
                d.join(v[6][i], v[6][i + 2]);
                ans[0].push_back(v[6][i]);
                ans[1].push_back(v[6][i + 2]);
                ans[2].push_back(7);
                ans[3].push_back(i + 1);
            }
        }
        vector< pair< ll, pair<ll, ll> > > vec;
        for (int i = 2; i < 200000; i += 2) {
            if (v[4][i] != -1 && v[4][i + 2] != -1 && d.find_p(v[4][i]) != d.find_p(v[4][i + 2])) {
                d.join(v[4][i], v[4][i + 2]);
                vec.push_back({i + 1, {v[4][i], v[4][i + 2]}});
            }
        }
        for (int i = 2; i <= 200000; i += 2) {
            if (v[4][i] != -1 && v[2][i] != -1 && d.find_p(v[4][i]) != d.find_p(v[2][i])) {
                d.join(v[4][i], v[2][i]);
                vec.push_back({i, {v[4][i], v[2][i]}});
            }
            if (v[4][i] != -1 && v[6][i] != -1 && d.find_p(v[4][i]) != d.find_p(v[6][i])) {
                d.join(v[4][i], v[6][i]);
                vec.push_back({i, {v[4][i], v[6][i]}});
            }
        }
        set< pair<ll, ll> > st;
        sort(vec.begin(), vec.end());
        for (auto i : vec) {
            if (i.first % 2 == 0) {
                if (!st.count({(x[i.second.first] + x[i.second.second]) / 2, i.first - 1})) {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2, i.first - 1});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                    ans[3].push_back(i.first - 1);
                }
                else {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2, i.first + 1});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                    ans[3].push_back(i.first + 1);
                }
            }
            else {
                if (!st.count({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2})) {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 - 1);
                    ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
                }
                else {
                    st.insert({(x[i.second.first] + x[i.second.second]) / 2 + 1, (y[i.second.first] + y[i.second.second]) / 2});
                    ans[0].push_back(i.second.first);
                    ans[1].push_back(i.second.second);
                    ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 + 1);
                    ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
                }
            }
        }
        if (d.sz[d.find_p(0)] != n) {
            return 0;
        }
        build(ans[0], ans[1], ans[2], ans[3]);
        return 1;
    }
    map< pair<ll, ll>, ll > pts;
    for (int i = 0; i < n; i++) {
        pts[{x[i], y[i]}] = i;
    }
    dsu d(n);
    vector< pair< pair<ll, ll>, pair<ll, ll> > > vec;
    for (int i = 0; i < n; i++) {
        if (pts.count({x[i], y[i] - 2}) && d.find_p(i) != d.find_p(pts[{x[i], y[i] - 2}])) {
            d.join(i, pts[{x[i], y[i] - 2}]);
            vec.push_back({{x[i], y[i] - 1}, {i, pts[{x[i], y[i] - 2}]}});
        }
        if (pts.count({x[i], y[i] + 2}) && d.find_p(i) != d.find_p(pts[{x[i], y[i] + 2}])) {
            d.join(i, pts[{x[i], y[i] + 2}]);
            vec.push_back({{x[i], y[i] + 1}, {i, pts[{x[i], y[i] + 2}]}});
        }
        if (pts.count({x[i] - 2, y[i]}) && d.find_p(i) != d.find_p(pts[{x[i] - 2, y[i]}])) {
            d.join(i, pts[{x[i] - 2, y[i]}]);
            vec.push_back({{x[i] - 1, y[i]}, {i, pts[{x[i] - 2, y[i]}]}});
        }
        if (pts.count({x[i] + 2, y[i]}) && d.find_p(i) != d.find_p(pts[{x[i] + 2, y[i]}])) {
            d.join(i, pts[{x[i] + 2, y[i]}]);
            vec.push_back({{x[i] + 1, y[i]}, {i, pts[{x[i] + 2, y[i]}]}});
        }
    }
    set< pair<ll, ll> > st;
    for (auto i : vec) {
        if (i.first.first % 2 == 0) {
            if (!st.count({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2})) {
                st.insert({(x[i.second.first] + x[i.second.second]) / 2 - 1, (y[i.second.first] + y[i.second.second]) / 2});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 - 1);
                ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
            }
            else {
                st.insert({(x[i.second.first] + x[i.second.second]) / 2 + 1, (y[i.second.first] + y[i.second.second]) / 2});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2 + 1);
                ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2);
            }
        }
        else {
            if (!st.count({(x[i.second.first] + x[i.second.second]) / 2, (y[i.second.first] + y[i.second.second]) / 2 - 1})) {
                st.insert({(x[i.second.first] + x[i.second.second]) / 2, (y[i.second.first] + y[i.second.second]) / 2 - 1});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2 - 1);
            }
            else {
                st.insert({(x[i.second.first] + x[i.second.second]) / 2, (y[i.second.first] + y[i.second.second]) / 2 + 1});
                ans[0].push_back(i.second.first);
                ans[1].push_back(i.second.second);
                ans[2].push_back((x[i.second.first] + x[i.second.second]) / 2);
                ans[3].push_back((y[i.second.first] + y[i.second.second]) / 2 + 1);
            }
        }
    }
    if (d.sz[d.find_p(0)] != n) {
        return 0;
    }
    build(ans[0], ans[1], ans[2], ans[3]);
    return 1;
}
# Verdict Execution time Memory Grader output
1 Correct 5 ms 12892 KB Output is correct
2 Correct 5 ms 12824 KB Output is correct
3 Correct 6 ms 12892 KB Output is correct
4 Correct 6 ms 12816 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 6 ms 12888 KB Output is correct
8 Correct 5 ms 12888 KB Output is correct
9 Correct 37 ms 19520 KB Output is correct
10 Correct 9 ms 13048 KB Output is correct
11 Correct 20 ms 15596 KB Output is correct
12 Correct 10 ms 13148 KB Output is correct
13 Correct 16 ms 13888 KB Output is correct
14 Correct 6 ms 12892 KB Output is correct
15 Correct 6 ms 13000 KB Output is correct
16 Correct 36 ms 19748 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 12892 KB Output is correct
2 Correct 5 ms 12824 KB Output is correct
3 Correct 6 ms 12892 KB Output is correct
4 Correct 6 ms 12816 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 6 ms 12888 KB Output is correct
8 Correct 5 ms 12888 KB Output is correct
9 Correct 37 ms 19520 KB Output is correct
10 Correct 9 ms 13048 KB Output is correct
11 Correct 20 ms 15596 KB Output is correct
12 Correct 10 ms 13148 KB Output is correct
13 Correct 16 ms 13888 KB Output is correct
14 Correct 6 ms 12892 KB Output is correct
15 Correct 6 ms 13000 KB Output is correct
16 Correct 36 ms 19748 KB Output is correct
17 Correct 6 ms 12892 KB Output is correct
18 Correct 5 ms 12888 KB Output is correct
19 Correct 5 ms 12892 KB Output is correct
20 Correct 5 ms 12892 KB Output is correct
21 Correct 5 ms 12816 KB Output is correct
22 Correct 6 ms 12892 KB Output is correct
23 Correct 119 ms 36792 KB Output is correct
24 Correct 5 ms 12888 KB Output is correct
25 Correct 6 ms 12892 KB Output is correct
26 Correct 6 ms 12900 KB Output is correct
27 Correct 6 ms 12888 KB Output is correct
28 Correct 54 ms 21300 KB Output is correct
29 Correct 66 ms 25912 KB Output is correct
30 Correct 92 ms 31052 KB Output is correct
31 Correct 104 ms 36064 KB Output is correct
32 Correct 7 ms 12888 KB Output is correct
33 Correct 6 ms 12892 KB Output is correct
34 Correct 6 ms 12848 KB Output is correct
35 Correct 6 ms 12772 KB Output is correct
36 Correct 6 ms 12888 KB Output is correct
37 Correct 5 ms 12892 KB Output is correct
38 Correct 6 ms 12888 KB Output is correct
39 Correct 5 ms 12892 KB Output is correct
40 Correct 5 ms 12884 KB Output is correct
41 Correct 6 ms 12892 KB Output is correct
42 Correct 5 ms 12892 KB Output is correct
43 Correct 7 ms 12892 KB Output is correct
44 Correct 7 ms 12892 KB Output is correct
45 Correct 52 ms 25148 KB Output is correct
46 Correct 77 ms 32360 KB Output is correct
47 Correct 74 ms 32312 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 12892 KB Output is correct
2 Correct 5 ms 12824 KB Output is correct
3 Correct 6 ms 12892 KB Output is correct
4 Correct 6 ms 12816 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 6 ms 12888 KB Output is correct
8 Correct 5 ms 12888 KB Output is correct
9 Correct 37 ms 19520 KB Output is correct
10 Correct 9 ms 13048 KB Output is correct
11 Correct 20 ms 15596 KB Output is correct
12 Correct 10 ms 13148 KB Output is correct
13 Correct 16 ms 13888 KB Output is correct
14 Correct 6 ms 12892 KB Output is correct
15 Correct 6 ms 13000 KB Output is correct
16 Correct 36 ms 19748 KB Output is correct
17 Correct 6 ms 12892 KB Output is correct
18 Correct 5 ms 12888 KB Output is correct
19 Correct 5 ms 12892 KB Output is correct
20 Correct 5 ms 12892 KB Output is correct
21 Correct 5 ms 12816 KB Output is correct
22 Correct 6 ms 12892 KB Output is correct
23 Correct 119 ms 36792 KB Output is correct
24 Correct 5 ms 12888 KB Output is correct
25 Correct 6 ms 12892 KB Output is correct
26 Correct 6 ms 12900 KB Output is correct
27 Correct 6 ms 12888 KB Output is correct
28 Correct 54 ms 21300 KB Output is correct
29 Correct 66 ms 25912 KB Output is correct
30 Correct 92 ms 31052 KB Output is correct
31 Correct 104 ms 36064 KB Output is correct
32 Correct 7 ms 12888 KB Output is correct
33 Correct 6 ms 12892 KB Output is correct
34 Correct 6 ms 12848 KB Output is correct
35 Correct 6 ms 12772 KB Output is correct
36 Correct 6 ms 12888 KB Output is correct
37 Correct 5 ms 12892 KB Output is correct
38 Correct 6 ms 12888 KB Output is correct
39 Correct 5 ms 12892 KB Output is correct
40 Correct 5 ms 12884 KB Output is correct
41 Correct 6 ms 12892 KB Output is correct
42 Correct 5 ms 12892 KB Output is correct
43 Correct 7 ms 12892 KB Output is correct
44 Correct 7 ms 12892 KB Output is correct
45 Correct 52 ms 25148 KB Output is correct
46 Correct 77 ms 32360 KB Output is correct
47 Correct 74 ms 32312 KB Output is correct
48 Correct 6 ms 12888 KB Output is correct
49 Correct 6 ms 12892 KB Output is correct
50 Correct 5 ms 12888 KB Output is correct
51 Correct 6 ms 12892 KB Output is correct
52 Correct 6 ms 12892 KB Output is correct
53 Correct 5 ms 12892 KB Output is correct
54 Correct 6 ms 12920 KB Output is correct
55 Correct 100 ms 33976 KB Output is correct
56 Correct 5 ms 12888 KB Output is correct
57 Correct 6 ms 12892 KB Output is correct
58 Correct 7 ms 12892 KB Output is correct
59 Correct 7 ms 12892 KB Output is correct
60 Correct 45 ms 21996 KB Output is correct
61 Correct 62 ms 26932 KB Output is correct
62 Correct 73 ms 29432 KB Output is correct
63 Correct 93 ms 33588 KB Output is correct
64 Correct 10 ms 12888 KB Output is correct
65 Correct 5 ms 12892 KB Output is correct
66 Correct 5 ms 12892 KB Output is correct
67 Correct 71 ms 27580 KB Output is correct
68 Correct 70 ms 27704 KB Output is correct
69 Correct 70 ms 27700 KB Output is correct
70 Correct 7 ms 12892 KB Output is correct
71 Correct 7 ms 12892 KB Output is correct
72 Correct 47 ms 23860 KB Output is correct
73 Correct 95 ms 30376 KB Output is correct
74 Correct 116 ms 36404 KB Output is correct
75 Correct 81 ms 30516 KB Output is correct
76 Correct 74 ms 27700 KB Output is correct
77 Correct 7 ms 12888 KB Output is correct
78 Correct 8 ms 12892 KB Output is correct
79 Correct 45 ms 23356 KB Output is correct
80 Correct 69 ms 29240 KB Output is correct
81 Correct 90 ms 35384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 12892 KB Output is correct
2 Correct 5 ms 12824 KB Output is correct
3 Correct 6 ms 12892 KB Output is correct
4 Correct 6 ms 12816 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 6 ms 12888 KB Output is correct
8 Correct 5 ms 12888 KB Output is correct
9 Correct 37 ms 19520 KB Output is correct
10 Correct 9 ms 13048 KB Output is correct
11 Correct 20 ms 15596 KB Output is correct
12 Correct 10 ms 13148 KB Output is correct
13 Correct 16 ms 13888 KB Output is correct
14 Correct 6 ms 12892 KB Output is correct
15 Correct 6 ms 13000 KB Output is correct
16 Correct 36 ms 19748 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 0 ms 600 KB Output is correct
19 Correct 0 ms 432 KB Output is correct
20 Incorrect 470 ms 48472 KB Tree @(178467, 21537) appears more than once: for edges on positions 3048 and 3049
21 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 12892 KB Output is correct
2 Correct 5 ms 12824 KB Output is correct
3 Correct 6 ms 12892 KB Output is correct
4 Correct 6 ms 12816 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 6 ms 12888 KB Output is correct
8 Correct 5 ms 12888 KB Output is correct
9 Correct 37 ms 19520 KB Output is correct
10 Correct 9 ms 13048 KB Output is correct
11 Correct 20 ms 15596 KB Output is correct
12 Correct 10 ms 13148 KB Output is correct
13 Correct 16 ms 13888 KB Output is correct
14 Correct 6 ms 12892 KB Output is correct
15 Correct 6 ms 13000 KB Output is correct
16 Correct 36 ms 19748 KB Output is correct
17 Correct 462 ms 49340 KB Output is correct
18 Incorrect 455 ms 50892 KB Tree @(50003, 50001) appears more than once: for edges on positions 137259 and 163930
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 12892 KB Output is correct
2 Correct 5 ms 12824 KB Output is correct
3 Correct 6 ms 12892 KB Output is correct
4 Correct 6 ms 12816 KB Output is correct
5 Correct 5 ms 12892 KB Output is correct
6 Correct 6 ms 12892 KB Output is correct
7 Correct 6 ms 12888 KB Output is correct
8 Correct 5 ms 12888 KB Output is correct
9 Correct 37 ms 19520 KB Output is correct
10 Correct 9 ms 13048 KB Output is correct
11 Correct 20 ms 15596 KB Output is correct
12 Correct 10 ms 13148 KB Output is correct
13 Correct 16 ms 13888 KB Output is correct
14 Correct 6 ms 12892 KB Output is correct
15 Correct 6 ms 13000 KB Output is correct
16 Correct 36 ms 19748 KB Output is correct
17 Correct 6 ms 12892 KB Output is correct
18 Correct 5 ms 12888 KB Output is correct
19 Correct 5 ms 12892 KB Output is correct
20 Correct 5 ms 12892 KB Output is correct
21 Correct 5 ms 12816 KB Output is correct
22 Correct 6 ms 12892 KB Output is correct
23 Correct 119 ms 36792 KB Output is correct
24 Correct 5 ms 12888 KB Output is correct
25 Correct 6 ms 12892 KB Output is correct
26 Correct 6 ms 12900 KB Output is correct
27 Correct 6 ms 12888 KB Output is correct
28 Correct 54 ms 21300 KB Output is correct
29 Correct 66 ms 25912 KB Output is correct
30 Correct 92 ms 31052 KB Output is correct
31 Correct 104 ms 36064 KB Output is correct
32 Correct 7 ms 12888 KB Output is correct
33 Correct 6 ms 12892 KB Output is correct
34 Correct 6 ms 12848 KB Output is correct
35 Correct 6 ms 12772 KB Output is correct
36 Correct 6 ms 12888 KB Output is correct
37 Correct 5 ms 12892 KB Output is correct
38 Correct 6 ms 12888 KB Output is correct
39 Correct 5 ms 12892 KB Output is correct
40 Correct 5 ms 12884 KB Output is correct
41 Correct 6 ms 12892 KB Output is correct
42 Correct 5 ms 12892 KB Output is correct
43 Correct 7 ms 12892 KB Output is correct
44 Correct 7 ms 12892 KB Output is correct
45 Correct 52 ms 25148 KB Output is correct
46 Correct 77 ms 32360 KB Output is correct
47 Correct 74 ms 32312 KB Output is correct
48 Correct 6 ms 12888 KB Output is correct
49 Correct 6 ms 12892 KB Output is correct
50 Correct 5 ms 12888 KB Output is correct
51 Correct 6 ms 12892 KB Output is correct
52 Correct 6 ms 12892 KB Output is correct
53 Correct 5 ms 12892 KB Output is correct
54 Correct 6 ms 12920 KB Output is correct
55 Correct 100 ms 33976 KB Output is correct
56 Correct 5 ms 12888 KB Output is correct
57 Correct 6 ms 12892 KB Output is correct
58 Correct 7 ms 12892 KB Output is correct
59 Correct 7 ms 12892 KB Output is correct
60 Correct 45 ms 21996 KB Output is correct
61 Correct 62 ms 26932 KB Output is correct
62 Correct 73 ms 29432 KB Output is correct
63 Correct 93 ms 33588 KB Output is correct
64 Correct 10 ms 12888 KB Output is correct
65 Correct 5 ms 12892 KB Output is correct
66 Correct 5 ms 12892 KB Output is correct
67 Correct 71 ms 27580 KB Output is correct
68 Correct 70 ms 27704 KB Output is correct
69 Correct 70 ms 27700 KB Output is correct
70 Correct 7 ms 12892 KB Output is correct
71 Correct 7 ms 12892 KB Output is correct
72 Correct 47 ms 23860 KB Output is correct
73 Correct 95 ms 30376 KB Output is correct
74 Correct 116 ms 36404 KB Output is correct
75 Correct 81 ms 30516 KB Output is correct
76 Correct 74 ms 27700 KB Output is correct
77 Correct 7 ms 12888 KB Output is correct
78 Correct 8 ms 12892 KB Output is correct
79 Correct 45 ms 23356 KB Output is correct
80 Correct 69 ms 29240 KB Output is correct
81 Correct 90 ms 35384 KB Output is correct
82 Correct 1 ms 344 KB Output is correct
83 Correct 0 ms 600 KB Output is correct
84 Correct 0 ms 432 KB Output is correct
85 Incorrect 470 ms 48472 KB Tree @(178467, 21537) appears more than once: for edges on positions 3048 and 3049
86 Halted 0 ms 0 KB -