Submission #1061177

# Submission time Handle Problem Language Result Execution time Memory
1061177 2024-08-16T06:59:42 Z hashiryo Potatoes and fertilizers (LMIO19_bulves) C++17
100 / 100
304 ms 36220 KB
// #define _GLIBCXX_DEBUG
#include <bits/stdc++.h>
// clang-format off
std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,const __int128_t &u){if(!u)os<<"0";__int128_t tmp=u<0?(os<<"-",-u):u;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
std::ostream&operator<<(std::ostream&os,const __uint128_t &u){if(!u)os<<"0";__uint128_t tmp=u;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
#define checkpoint() (void(0))
#define debug(...) (void(0))
#define debugArray(x,n) (void(0))
#define debugMatrix(x,h,w) (void(0))
// clang-format on
// clang-format off
template<class T>struct make_long{using type= T;};
template<>struct make_long<int8_t>{using type= int16_t;};
template<>struct make_long<uint8_t>{using type= uint16_t;};
template<>struct make_long<int16_t>{using type= int32_t;};
template<>struct make_long<uint16_t>{using type= uint32_t;};
template<>struct make_long<int32_t>{using type= int64_t;};
template<>struct make_long<uint32_t>{using type= uint64_t;};
template<>struct make_long<int64_t>{using type= __int128_t;};
template<>struct make_long<uint64_t>{using type= __uint128_t;};
template<>struct make_long<float>{using type= double;};
template<>struct make_long<double>{using type= long double;};
template<class T> using make_long_t= typename make_long<T>::type;
// clang-format on
template <class T, bool persistent= false, size_t NODE_SIZE= 1 << 22> class PiecewiseLinearConvex {
 using D= make_long_t<T>;
 struct Node {
  int ch[2];
  T z, x, d, a;
  D s;
  size_t sz;
  friend std::ostream &operator<<(std::ostream &os, const Node &t) { return os << "{z:" << t.z << ",x:" << t.x << ",d:" << t.d << ",a:" << t.a << ",s:" << t.s << ",sz:" << t.sz << ",ch:(" << t.ch[0] << "," << t.ch[1] << ")}"; }
 };
 static inline size_t ni= 1;
 static inline Node *n= new Node[NODE_SIZE];
 static inline void info(int t, int d, std::stringstream &ss) {
  if (!t) return;
  info(n[t].ch[0], d + 1, ss);
  for (int i= 0; i < d; ++i) ss << "   ";
  ss << " ■ " << n[t] << '\n', info(n[t].ch[1], d + 1, ss);
 }
 static inline void dump_xs(int t, std::vector<T> &xs) {
  if (t) push(t), dump_xs(n[t].ch[0], xs), xs.push_back(n[t].x), dump_xs(n[t].ch[1], xs);
 }
 static inline void dump_slopes_l(int t, T ofs, std::vector<T> &as) {
  if (t) push(t), dump_slopes_l(n[t].ch[1], ofs, as), ofs+= n[n[t].ch[1]].a + n[t].d, as.push_back(-ofs), dump_slopes_l(n[t].ch[0], ofs, as);
 }
 static inline void dump_slopes_r(int t, T ofs, std::vector<T> &as) {
  if (t) push(t), dump_slopes_r(n[t].ch[0], ofs, as), ofs+= n[n[t].ch[0]].a + n[t].d, as.push_back(ofs), dump_slopes_r(n[t].ch[1], ofs, as);
 }
 static inline int create(T d, T x) { return n[ni].d= d, n[ni].x= x, n[ni].z= 0, ni++; }
 template <class Iter> static inline int build(Iter bg, Iter ed) {
  if (bg == ed) return 0;
  auto md= bg + (ed - bg) / 2;
  int t= create(md->first, md->second);
  return n[t].ch[0]= build(bg, md), n[t].ch[1]= build(md + 1, ed), update(t), t;
 }
 template <class Iter> static inline void dump(Iter itr, int t) {
  if (!t) return;
  push(t);
  size_t sz= n[n[t].ch[0]].sz;
  dump(itr, n[t].ch[0]), *(itr + sz)= {n[t].d, n[t].x}, dump(itr + sz + 1, n[t].ch[1]);
 }
 static inline void update(int t) {
  int l= n[t].ch[0], r= n[t].ch[1];
  n[t].sz= 1 + n[l].sz + n[r].sz, n[t].a= n[t].d + n[l].a + n[r].a, n[t].s= D(n[t].x) * n[t].d + n[l].s + n[r].s;
 }
 template <bool b= 1> static inline void prop(int &t, T v) {
  if constexpr (persistent && b) {
   if (!t) return;
   n[ni]= n[t], t= ni++;
  }
  n[t].z+= v, n[t].s+= D(v) * n[t].a, n[t].x+= v;
 }
 static inline void push(int t) {
  if (n[t].z != 0) prop(n[t].ch[0], n[t].z), prop(n[t].ch[1], n[t].z), n[t].z= 0;
 }
 template <bool r> static inline int join_(int t, int a, int b) {
  push(a);
  if constexpr (r) b= join<0>(b, t, n[a].ch[0]);
  else b= join<0>(n[a].ch[1], t, b);
  if constexpr (persistent) n[ni]= n[a], a= ni++;
  if (n[n[a].ch[r]].sz * 4 >= n[b].sz) return n[a].ch[!r]= b, update(a), a;
  return n[a].ch[!r]= n[b].ch[r], update(a), n[b].ch[r]= a, update(b), b;
 }
 template <bool b= 1> static inline int join(int l, int t, int r) {
  if constexpr (persistent && b) n[ni]= n[t], t= ni++;
  if (n[l].sz > n[r].sz * 4) return join_<0>(t, l, r);
  if (n[r].sz > n[l].sz * 4) return join_<1>(t, r, l);
  return n[t].ch[0]= l, n[t].ch[1]= r, update(t), t;
 }
 static inline std::array<int, 3> split(int t, T x) {
  if (!t) return {0, 0, 0};
  push(t);
  if (n[t].x < x) {
   auto [a, b, c]= split(n[t].ch[1], x);
   return {join(n[t].ch[0], t, a), b, c};
  } else if (x < n[t].x) {
   auto [a, b, c]= split(n[t].ch[0], x);
   return {a, b, join(c, t, n[t].ch[1])};
  }
  return {n[t].ch[0], t, n[t].ch[1]};
 }
 static inline int unite(int l, int r) {
  if (!l) return r;
  if (!r) return l;
  push(l);
  if constexpr (persistent) n[ni]= n[l], l= ni++;
  auto [a, b, c]= split(r, n[l].x);
  return n[l].d+= n[b].d, join<0>(unite(a, n[l].ch[0]), l, unite(n[l].ch[1], c));
 }
 static inline int insert(int t, T x, T d) {
  if (!t) return n[ni]= Node{{0, 0}, 0, x, d, d, D(x) * d, 1}, ni++;
  push(t);
  if constexpr (persistent) n[ni]= n[t], t= ni++;
  if (n[t].x == x) return n[t].d+= d, update(t), t;
  return x < n[t].x ? join<0>(insert(n[t].ch[0], x, d), t, n[t].ch[1]) : join<0>(n[t].ch[0], t, insert(n[t].ch[1], x, d));
 }
 template <bool r> static inline std::pair<int, int> pop(int t) {
  if (push(t); !n[t].ch[r]) return {n[t].ch[!r], t};
  auto [a, s]= pop<r>(n[t].ch[r]);
  if constexpr (r) return {join(n[t].ch[!r], t, a), s};
  else return {join(a, t, n[t].ch[!r]), s};
 }
 template <bool r> static inline bool lt(T a, T b) {
  if constexpr (r) return b < a;
  else return a < b;
 }
 template <bool r> static inline int cut(int t, T x) {
  if (!t) return t;
  if (push(t); n[t].x == x) return n[t].ch[!r];
  if (lt<r>(n[t].x, x)) return cut<r>(n[t].ch[!r], x);
  if constexpr (r) return join(n[t].ch[0], t, cut<1>(n[t].ch[1], x));
  else return join(cut<0>(n[t].ch[0], x), t, n[t].ch[1]);
 }
 template <bool r> static inline D calc_y(int t, T x, T ol, D ou) {
  for (; t;) {
   if (push(t); lt<r>(n[t].x, x)) t= n[t].ch[!r];
   else {
    if (ol+= n[n[t].ch[!r]].a, ou+= n[n[t].ch[!r]].s; n[t].x == x) break;
    ol+= n[t].d, ou+= D(n[t].x) * n[t].d, t= n[t].ch[r];
   }
  }
  return D(x) * ol - ou;
 }
 template <bool r> static inline std::array<int, 3> split(int t, T p, T &ol, D &ou) {
  push(t);
  T s= ol + n[n[t].ch[!r]].a;
  if (p < s) {
   auto [a, b, c]= split<r>(n[t].ch[!r], p, ol, ou);
   if constexpr (r) return {a, b, join(c, t, n[t].ch[r])};
   else return {join(n[t].ch[r], t, a), b, c};
  }
  ol= s + n[t].d;
  if (ol < p) {
   ou+= n[n[t].ch[!r]].s + D(n[t].x) * n[t].d;
   auto [a, b, c]= split<r>(n[t].ch[r], p, ol, ou);
   if constexpr (r) return {join(n[t].ch[!r], t, a), b, c};
   else return {a, b, join(c, t, n[t].ch[!r])};
  }
  ou+= n[n[t].ch[!r]].s;
  return {n[t].ch[0], t, n[t].ch[1]};
 }
 template <bool l> static inline bool lte(T a, T b) {
  if constexpr (l) return a < b;
  else return a <= b;
 }
 template <bool l, bool r> static inline std::pair<int, int> split_cum(int t, T p, T &ol, D &ou) {
  push(t);
  T s= ol + n[n[t].ch[!r]].a;
  if (lte<l>(p, s)) {
   auto [c, b]= split_cum<l, r>(n[t].ch[!r], p, ol, ou);
   if constexpr (l) {
    if constexpr (r) return {join(c, t, n[t].ch[r]), b};
    else return {join(n[t].ch[r], t, c), b};
   } else return {c, b};
  }
  ol= s + n[t].d;
  if (lte<!l>(ol, p)) {
   ou+= n[n[t].ch[!r]].s + D(n[t].x) * n[t].d;
   auto [a, b]= split_cum<l, r>(n[t].ch[r], p, ol, ou);
   if constexpr (l) return {a, b};
   else {
    if constexpr (r) return {join(n[t].ch[!r], t, a), b};
    else return {join(a, t, n[t].ch[!r]), b};
   }
  }
  ou+= n[n[t].ch[!r]].s;
  return {n[t].ch[!r ^ l], t};
 }
 int mn, lr[2];
 bool bf[2];
 T o[2], rem, bx[2];
 D y;
 inline D calc_y(T x) {
  if (!mn) return 0;
  if (n[mn].x == x) return 0;
  return x < n[mn].x ? -calc_y<0>(lr[0], x, o[0], D(n[mn].x) * o[0]) : calc_y<1>(lr[1], x, o[1], D(n[mn].x) * o[1]);
 }
 inline void slope_eval(bool neg) {
  T p= neg ? -rem : rem, ol= o[neg];
  if (p <= ol) o[neg]-= p, o[!neg]+= p, y+= D(n[mn].x) * rem;
  else {
   D ou= D(n[mn].x) * ol;
   auto [a, b, c]= neg ? split<1>(lr[neg], p, ol, ou) : split<0>(lr[neg], p, ol, ou);
   o[neg]= ol - p, ol-= n[b].d, ou+= D(n[b].x) * (o[!neg]= p - ol);
   if (neg) y-= ou, lr[!neg]= join(lr[!neg], mn, a), lr[neg]= c;
   else y+= ou, lr[!neg]= join(c, mn, lr[!neg]), lr[neg]= a;
   mn= b;
  }
  rem= 0;
 }
 template <bool l, bool neg> inline void slope_eval_cum() {
  T p= neg ? -rem : rem, ol= o[neg];
  if (lte<l>(p, ol)) o[neg]-= p, o[!neg]+= p, y+= D(n[mn].x) * rem;
  else {
   D ou= D(n[mn].x) * ol;
   auto [a, b]= split_cum<l, neg>(lr[neg], p, ol, ou);
   o[neg]= ol - p, ol-= n[b].d, ou+= D(n[b].x) * (o[!neg]= p - ol);
   if constexpr (l) lr[neg]= a;
   else {
    if constexpr (neg) lr[!neg]= join(lr[!neg], mn, a);
    else lr[!neg]= join(a, mn, lr[!neg]);
   }
   if constexpr (neg) y-= ou;
   else y+= ou;
   mn= b;
  }
  rem= 0;
 }
 template <bool r> void add_inf(T x0) {
  if (bf[r] && !lt<r>(bx[r], x0)) return;
  if (assert(!bf[!r] || !lt<r>(bx[!r], x0)), bf[r]= true, bx[r]= x0; !mn) return;
  if (lt<r>(x0, n[mn].x)) return lr[r]= cut<r>(lr[r], x0), void();
  D q= n[lr[!r]].s + D(n[mn].x) * o[!r];
  T v= o[!r] + n[lr[!r]].a;
  lr[!r]= cut<r>(lr[!r], x0);
  if (!r) y-= q, rem+= v;
  else y+= q, rem-= v;
  if (lr[!r]) std::tie(lr[r], mn)= pop<!r>(lr[!r]), lr[!r]= 0;
  else mn= lr[r]= 0;
  o[r]= n[mn].d, o[!r]= 0;
 }
 inline void prop(T x) {
  if constexpr (persistent) mn= create(n[mn].d, n[mn].x);
  n[mn].x+= x;
 }
public:
 // f(x) := 0
 PiecewiseLinearConvex(): mn(0), lr{0, 0}, bf{0, 0}, o{0, 0}, rem(0), bx{0, 0}, y(0) {}
 //  f(x) := sum max(0, a(x-x0))
 PiecewiseLinearConvex(const std::vector<std::pair<T, T>> &ramps): PiecewiseLinearConvex() {
  int m= ramps.size();
  if (!m) return;
  std::vector<std::pair<T, T>> w(m);
  int s= 0, t= 0;
  for (auto [d, x]: ramps) {
   if (d == 0) continue;
   if (d < 0) y-= D(d) * x, rem+= d, d= -d;
   w[s++]= {d, x};
  }
  std::sort(w.begin(), w.begin() + s, [](auto a, auto b) { return a.second < b.second; });
  for (int i= 0; i < s; ++i) {
   if (t && w[t - 1].second == w[i].second) w[t - 1].first+= w[i].first;
   else w[t++]= w[i];
  }
  mn= create(w[0].first, w[0].second), o[1]= n[mn].d, lr[1]= build(w.begin() + 1, w.begin() + t);
 }
 std::string info() {
  std::stringstream ss;
  if (ss << "\n rem:" << rem << ", y:" << y << ", mn:" << mn << ", lr:{" << lr[0] << ", " << lr[1] << "}\n bf[0]:" << bf[0] << ", bf[1]:" << bf[1] << ", bx[0]:" << bx[0] << ", bx[1]:" << bx[1] << "\n " << "o[0]:" << o[0] << ", o[1]:" << o[1] << "\n"; mn) {
   if (lr[0]) info(lr[0], 1, ss);
   ss << " ■ " << n[mn] << '\n';
   if (lr[1]) info(lr[1], 1, ss);
  }
  return ss.str();
 }
 template <class... Args> static inline void rebuild(Args &...plc) {
  static_assert(std::conjunction_v<std::is_same<PiecewiseLinearConvex, Args>...>);
  constexpr size_t m= sizeof...(Args);
  std::array<std::vector<std::pair<T, T>>, m> ls, rs;
  std::array<std::pair<T, T>, m> mns;
  int i= 0;
  (void)(int[]){(mns[i]= {n[plc.mn].d, n[plc.mn].x}, ls[i].resize(n[plc.lr[0]].sz), rs[i].resize(n[plc.lr[1]].sz), dump(ls[i].begin(), plc.lr[0]), dump(rs[i].begin(), plc.lr[1]), ++i)...};
  ni= 1, i= 0;
  (void)(int[]){((plc.mn ? (plc.mn= create(mns[i].first, mns[i].second)) : 0), plc.lr[0]= build(ls[i].begin(), ls[i].end()), plc.lr[1]= build(rs[i].begin(), rs[i].end()), ++i)...};
 }
 static inline void rebuild(std::vector<PiecewiseLinearConvex> &plcs) {
  size_t m= plcs.size();
  std::vector<std::vector<std::pair<T, T>>> ls(m), rs(m);
  std::vector<std::pair<T, T>> mns(m);
  for (int i= m; i--;) mns[i]= {n[plcs[i].mn].d, n[plcs[i].mn].x}, ls[i].resize(n[plcs[i].lr[0]].sz), rs[i].resize(n[plcs[i].lr[1]].sz), dump(ls[i].begin(), plcs[i].lr[0]), dump(rs[i].begin(), plcs[i].lr[1]);
  ni= 1;
  for (int i= m; i--;) (plcs[i].mn ? (plcs[i].mn= create(mns[i].first, mns[i].second)) : 0), plcs[i].lr[0]= build(ls[i].begin(), ls[i].end()), plcs[i].lr[1]= build(rs[i].begin(), rs[i].end());
 }
 static void reset() { ni= 1; }
 static bool pool_empty() {
  if constexpr (persistent) return ni >= NODE_SIZE * 0.8;
  else return ni + 1000 >= NODE_SIZE;
 }
 // f(x) += c
 void add_const(D c) { y+= c; }
 // f(x) += ax, /
 void add_linear(T a) { rem+= a; }
 //  f(x) += max(a(x-x0),b(x-x0)), (a < b)
 void add_max(T a, T b, T x0) {
  assert(a < b);
  if (bf[0] && x0 <= bx[0]) y-= D(b) * x0, rem+= b;
  else if (bf[1] && bx[1] <= x0) y-= D(a) * x0, rem+= a;
  else if (T c= b - a; mn) {
   if (n[mn].x == x0) {
    if constexpr (persistent) mn= create(n[mn].d, n[mn].x);
    n[mn].d+= c, o[1]+= c, y-= D(a) * x0, rem+= a;
   } else {
    if (n[mn].x < x0) lr[1]= insert(lr[1], x0, c), y-= D(a) * x0, rem+= a;
    else lr[0]= insert(lr[0], x0, c), y-= D(b) * x0, rem+= b;
   }
  } else mn= create(c, x0), y-= D(a) * x0, rem+= a, o[0]= 0, o[1]= c;
 }
 // f(x) +=  max(0, a(x-x0))
 void add_ramp(T a, T x0) {
  if (a != 0) a > 0 ? add_max(0, a, x0) : add_max(a, 0, x0);
 }
 // f(x) += a|x-x0|, \/
 void add_abs(T a, T x0) {
  if (assert(a >= 0); a != 0) add_max(-a, a, x0);
 }
 // right=false : f(x) +=  inf  (x < x_0), right=true: f(x) += inf  (x_0 < x)
 void add_inf(bool right= false, T x0= 0) { return right ? add_inf<1>(x0) : add_inf<0>(x0); }
 // f(x) <- f(x-x0)
 void shift(T x0) {
  if (bx[0]+= x0, bx[1]+= x0, y-= D(rem) * x0; mn) prop(x0), prop(lr[0], x0), prop(lr[1], x0);
 }
 // rev=false: f(x) <- min_{y<=x} f(y), rev=true : f(x) <- min_{x<=y} f(y)
 void chmin_cum(bool rev= false) {
  if (bf[0] && bf[1] && bx[0] == bx[1]) y+= D(rem) * bx[0], rem= 0;
  else if (rem != 0) {
   bool r= rem < 0;
   T u= (r ? -rem : rem) - o[r] - n[lr[r]].a;
   if (0 <= u) {
    if (r ^ rev) {
     if (u > 0 && bf[r]) {
      D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
      if (r ? y-= q : y+= q; mn) lr[!r]= join(lr[0], mn, lr[1]);
      o[!r]= u, rem= 0, mn= create(u, bx[r]);
     }
    } else {
     assert(bf[r]);
     D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
     (r ? y-= q : y+= q), rem= 0, mn= lr[r]= 0, o[r]= 0;
    }
    bf[!rev]= false;
    return;
   }
   if ((r ^ rev)) r ? slope_eval_cum<0, 1>() : slope_eval_cum<0, 0>();
   else r ? slope_eval_cum<1, 1>() : slope_eval_cum<1, 0>();
   if constexpr (persistent) mn= create(o[rev], n[mn].x);
   else n[mn].d= o[rev];
  } else if (mn) {
   if (o[rev] == 0) {
    if (lr[rev]) std::tie(lr[rev], mn)= rev ? pop<0>(lr[rev]) : pop<1>(lr[rev]), o[rev]= n[mn].d;
    else mn= 0;
   } else {
    if constexpr (persistent) mn= create(o[rev], n[mn].x);
    else n[mn].d= o[rev];
   }
  }
  bf[!rev]= false, lr[!rev]= 0, o[!rev]= 0;
 }
 //  f(x) <- min_{lb<=y<=ub} f(x-y). (lb <= ub), \_/ -> \__/
 void chmin_slide_win(T lb, T ub) {
  assert(lb <= ub);
  if (bf[0] && bf[1] && bx[0] == bx[1]) y+= D(rem) * bx[0], rem= 0;
  else {
   if (rem != 0) {
    bool r= rem < 0;
    T u= (r ? -rem : rem) - o[r] - n[lr[r]].a;
    if (0 < u) {
     T b[2]= {lb, ub};
     if (bf[r]) {
      D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
      if (r ? y-= q : y+= q; mn) lr[!r]= join(lr[0], mn, lr[1]), prop<0>(lr[!r], b[!r]);
      lr[r]= 0, rem= 0, o[!r]= u, o[r]= 0, mn= create(u, bx[r] + b[!r]);
     } else {
      y-= D(rem) * b[!r];
      if (mn) prop(b[!r]), prop(lr[0], b[!r]), prop(lr[1], b[!r]);
     }
     bx[0]+= lb, bx[1]+= ub;
     return;
    }
    slope_eval(r);
   }
   if (mn) {
    if (o[0] == 0) prop(ub);
    else if (o[1] == 0) prop(lb);
    else lr[1]= join<0>(0, create(o[1], n[mn].x), lr[1]), prop(lb), n[mn].d= o[0], o[1]= 0;
    prop(lr[0], lb), prop(lr[1], ub);
   }
  }
  bx[0]+= lb, bx[1]+= ub;
 }
 D operator()(T x) { return assert(!bf[0] || bx[0] <= x), assert(!bf[1] || x <= bx[1]), calc_y(x) + D(rem) * x + y; }
 D min() {
  if (rem == 0) return y;
  bool r= rem < 0;
  T u= (r ? -rem : rem) - o[r] - n[lr[r]].a;
  if (0 < u) {
   assert(bf[r]);
   D q= n[lr[r]].s + D(n[mn].x) * o[r] + D(u) * bx[r];
   return r ? y - q : y + q;
  }
  return slope_eval(r), y;
 }
 std::array<T, 2> argmin() {
  if (rem != 0) {
   bool r= rem < 0;
   if (o[r] + n[lr[r]].a < (r ? -rem : rem)) {
    assert(bf[r]);
    return {bx[r], bx[r]};
   }
   slope_eval(r);
  }
  std::array<T, 2> ret= {bx[0], bx[1]};
  int t= mn;
  if (!t) return ret;
  bool r= o[0] == 0;
  if (!r && o[1] != 0) ret[0]= ret[1]= n[t].x;
  else if (ret[r]= n[t].x, t= lr[!r]; t) {
   for (; push(t), n[t].ch[r];) t= n[t].ch[r];
   ret[!r]= n[t].x;
  } else assert(bf[!r]);
  return ret;
 }
 size_t size() { return n[lr[0]].sz + n[lr[1]].sz + !!mn; }
 PiecewiseLinearConvex &operator+=(const PiecewiseLinearConvex &g) { return *this= *this + g; }
 PiecewiseLinearConvex operator+(PiecewiseLinearConvex g) const {
  PiecewiseLinearConvex ret= *this;
  if (g.bf[0]) ret.add_inf(false, g.bx[0]);
  if (g.bf[1]) ret.add_inf(true, g.bx[1]);
  if (bf[0]) g.add_inf(false, bx[0]);
  if (bf[1]) g.add_inf(true, bx[1]);
  ret.y+= g.y, ret.rem+= g.rem;
  if (!g.mn) return ret;
  if (!ret.mn) return ret.mn= g.mn, ret.lr[0]= g.lr[0], ret.lr[1]= g.lr[1], ret.o[0]= g.o[0], ret.o[1]= g.o[1], ret;
  ret.y+= n[ret.lr[0]].s + D(n[ret.mn].x) * ret.o[0] + n[g.lr[0]].s + D(n[g.mn].x) * g.o[0], ret.rem-= ret.o[0] + n[ret.lr[0]].a + g.o[0] + n[g.lr[0]].a;
  int t= unite(join(ret.lr[0], ret.mn, ret.lr[1]), join(g.lr[0], g.mn, g.lr[1]));
  return std::tie(ret.lr[1], ret.mn)= pop<0>(t), ret.lr[0]= 0, ret.o[0]= 0, ret.o[1]= n[ret.mn].d, ret;
 }
 std::vector<T> dump_xs() {
  std::vector<T> xs;
  if (bf[0]) xs.push_back(bx[0]);
  dump_xs(lr[0], xs);
  if (mn) xs.push_back(n[mn].x);
  dump_xs(lr[1], xs);
  if (bf[1]) xs.push_back(bx[1]);
  return xs;
 }
 std::vector<std::pair<T, D>> dump_xys() {
  auto xs= dump_xs();
  std::vector<std::pair<T, D>> xys(xs.size());
  for (int i= xs.size(); i--;) xys[i]= {xs[i], operator()(xs[i])};
  return xys;
 }
 std::vector<T> dump_slopes() {
  std::vector<T> as;
  if (mn) as.push_back(-o[0]), dump_slopes_l(lr[0], o[0], as), std::reverse(as.begin(), as.end()), as.push_back(o[1]), dump_slopes_r(lr[1], o[1], as);
  else as.push_back(0);
  for (auto &a: as) a+= rem;
  return as;
 }
};
using namespace std;
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int N;
 cin >> N;
 PiecewiseLinearConvex<long long> f;
 f.add_inf(true);
 for (int i= 0; i < N; ++i) {
  int a, b;
  cin >> a >> b;
  f.chmin_cum(true);
  f.shift(a - b);
  f.add_abs(1, 0);
 }
 cout << f(0) << '\n';
 return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 14 ms 3932 KB Output is correct
5 Correct 34 ms 4836 KB Output is correct
6 Correct 91 ms 5972 KB Output is correct
7 Correct 70 ms 4948 KB Output is correct
8 Correct 268 ms 14928 KB Output is correct
9 Correct 125 ms 13140 KB Output is correct
10 Correct 61 ms 11616 KB Output is correct
11 Correct 80 ms 10832 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 14 ms 3932 KB Output is correct
5 Correct 34 ms 4836 KB Output is correct
6 Correct 91 ms 5972 KB Output is correct
7 Correct 70 ms 4948 KB Output is correct
8 Correct 268 ms 14928 KB Output is correct
9 Correct 125 ms 13140 KB Output is correct
10 Correct 61 ms 11616 KB Output is correct
11 Correct 80 ms 10832 KB Output is correct
12 Correct 47 ms 8572 KB Output is correct
13 Correct 124 ms 16228 KB Output is correct
14 Correct 81 ms 12372 KB Output is correct
15 Correct 302 ms 32928 KB Output is correct
16 Correct 224 ms 27916 KB Output is correct
17 Correct 41 ms 4324 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 508 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 508 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 1 ms 472 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 508 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 14 ms 3932 KB Output is correct
12 Correct 34 ms 4836 KB Output is correct
13 Correct 91 ms 5972 KB Output is correct
14 Correct 70 ms 4948 KB Output is correct
15 Correct 268 ms 14928 KB Output is correct
16 Correct 125 ms 13140 KB Output is correct
17 Correct 61 ms 11616 KB Output is correct
18 Correct 80 ms 10832 KB Output is correct
19 Correct 47 ms 8572 KB Output is correct
20 Correct 124 ms 16228 KB Output is correct
21 Correct 81 ms 12372 KB Output is correct
22 Correct 302 ms 32928 KB Output is correct
23 Correct 224 ms 27916 KB Output is correct
24 Correct 41 ms 4324 KB Output is correct
25 Correct 1 ms 344 KB Output is correct
26 Correct 1 ms 604 KB Output is correct
27 Correct 1 ms 604 KB Output is correct
28 Correct 1 ms 604 KB Output is correct
29 Correct 1 ms 348 KB Output is correct
30 Correct 1 ms 348 KB Output is correct
31 Correct 1 ms 472 KB Output is correct
32 Correct 1 ms 348 KB Output is correct
33 Correct 65 ms 9368 KB Output is correct
34 Correct 147 ms 22340 KB Output is correct
35 Correct 266 ms 35412 KB Output is correct
36 Correct 236 ms 32880 KB Output is correct
37 Correct 304 ms 25940 KB Output is correct
38 Correct 269 ms 36220 KB Output is correct
39 Correct 178 ms 13908 KB Output is correct
40 Correct 212 ms 25624 KB Output is correct
41 Correct 47 ms 13908 KB Output is correct
42 Correct 42 ms 12116 KB Output is correct
43 Correct 40 ms 10332 KB Output is correct
44 Correct 41 ms 9904 KB Output is correct
45 Correct 222 ms 29524 KB Output is correct
46 Correct 77 ms 8532 KB Output is correct
47 Correct 184 ms 26096 KB Output is correct