Submission #1060852

# Submission time Handle Problem Language Result Execution time Memory
1060852 2024-08-16T02:37:22 Z becaido Radio Towers (IOI22_towers) C++17
0 / 100
526 ms 11988 KB
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx,popcnt,sse4,abm")
#include <bits/stdc++.h>
using namespace std;

#ifndef WAIMAI
#include "towers.h"
#else
#include "stub.cpp"
#endif

#ifdef WAIMAI
#define debug(HEHE...) cout << "[" << #HEHE << "] : ", dout(HEHE)
void dout() {cout << '\n';}
template<typename T, typename...U>
void dout(T t, U...u) {cout << t << (sizeof...(u) ? ", " : ""), dout(u...);}
#else
#define debug(...) 7122
#endif

#define ll long long
#define Waimai ios::sync_with_stdio(false), cin.tie(0)
#define FOR(x,a,b) for (int x = a, I = b; x <= I; x++)
#define pb emplace_back
#define F first
#define S second

#define lpos pos*2
#define rpos pos*2+1

const int INF = 2e9 + 1;
const int SIZE = 1e5 + 5;

int n;
bool b;
int a[SIZE], ty[SIZE];
int pre[SIZE], pL[SIZE], pR[SIZE];

struct Segtree {
    int mx[SIZE << 2], mn[SIZE << 2];
    void build(int pos, int l, int r) {
        if (l == r) {
            mx[pos] = mn[pos] = a[l];
            return;
        }
        int mid = (l + r) / 2;
        build(lpos, l, mid);
        build(rpos, mid + 1, r);
        mx[pos] = max(mx[lpos], mx[rpos]);
        mn[pos] = min(mn[lpos], mn[rpos]);
    }
    int que_mn(int pos, int l, int r, int L, int R) {
        if (l == L && r == R) return mn[pos];
        int mid = (L + R) / 2;
        if (r <= mid) return que_mn(lpos, l, r, L, mid);
        if (l > mid) return que_mn(rpos, l, r, mid + 1, R);
        return min(que_mn(lpos, l, mid, L, mid), que_mn(rpos, mid + 1, r, mid + 1, R));
    }
    int schl(int pos, int l, int r, int L, int R, int x) {
        if (l == L && r == R) {
            if (mx[pos] < x) return n + 1;
            if (l == r) return l;
            int mid = (L + R) / 2, re = schl(lpos, l, mid, L, mid, x);
            return re == n + 1 ? schl(rpos, mid + 1, r, mid + 1, R, x) : re;
        }
        int mid = (L + R) / 2, re;
        if (r <= mid) return schl(lpos, l, r, L, mid, x);
        if (l > mid) return schl(rpos, l, r, mid + 1, R, x);
        re = schl(lpos, l, mid, L, mid, x);
        return re == n + 1 ? schl(rpos, mid + 1, r, mid + 1, R, x) : re;
    }
    int schr(int pos, int l, int r, int L, int R, int x) {
        if (l == L && r == R) {
            if (mx[pos] < x) return 0;
            if (l == r) return l;
            int mid = (L + R) / 2, re = schr(rpos, mid + 1, r, mid + 1, R, x);
            return re == 0 ? schr(lpos, l, mid, L, mid, x) : re;
        }
        int mid = (L + R) / 2, re;
        if (r <= mid) return schr(lpos, l, r, L, mid, x);
        if (l > mid) return schr(rpos, l, r, mid + 1, R, x);
        re = schr(rpos, mid + 1, r, mid + 1, R, x);
        return re == 0 ? schr(lpos, l, mid, L, mid, x) : re;
    }
} tree;

void init(int N, vector<int> H) {
    n = N;
    if (n == 1) return;
    FOR (i, 1, n) a[i] = H[i - 1];
    FOR (i, 1, n) {
        if ((i == 1 || a[i] < a[i - 1]) && (i == n || a[i] < a[i + 1])) ty[i] = 1;
        if ((i == 1 || a[i] > a[i - 1]) && (i == n || a[i] > a[i + 1])) ty[i] = 2;
    }
}

void build(int D) {
    set<int> s;
    multiset<pair<int, int>> ms;
    for (int i = 1, x = 1; i <= n; i++) if (ty[i] == x) {
        s.insert(i);
        x ^= 3;
    }
    if (ty[*s.rbegin()] == 2) s.erase(*s.rbegin());
    a[0] = a[n + 1] = INF;
    s.insert(0), s.insert(n + 1);
    bool f = 0;
    for (auto it = s.begin(); it != s.end(); it++) {
        f ^= 1;
        if (f == 0) continue;
        int i = *it;
        if (it != s.begin()) {
            int l = *prev(it);
            ms.emplace(a[i] - a[l], i);
        }
        if (next(it) != s.end()) {
            int r = *next(it);
            ms.emplace(a[i] - a[r], i);
        }
    }
    while (s.size() > 3) {
        int d = ms.begin()->F;
        if (d >= D) break;
        while (ms.size() && ms.begin()->F == d) {
            auto [_, i] = *ms.begin();
            auto it = s.lower_bound(i), lit = prev(it), rit = next(it);
            int l = *lit, r = *rit;
            int il = *prev(lit), ir = *next(rit);
            if (a[l] > a[r]) {
                ms.erase(ms.find({a[i] - a[l], i}));
                ms.erase(ms.find({a[il] - a[l], il}));
                if (a[i] < a[il]) {
                    ms.erase({a[i] - a[r], i});
                    ms.emplace(a[il] - a[r], il);
                    s.erase(i);
                } else {
                    int j = *prev(s.find(il));
                    ms.erase(ms.find({a[il] - a[j], il}));
                    ms.emplace(a[i] - a[j], i);
                    s.erase(il);
                }
                s.erase(l);
            } else {
                ms.erase(ms.find({a[i] - a[r], i}));
                ms.erase(ms.find({a[ir] - a[r], ir}));
                if (a[i] < a[ir]) {
                    ms.erase({a[i] - a[l], i});
                    ms.emplace(a[ir] - a[l], ir);
                    s.erase(i);
                } else {
                    int j = *next(s.find(ir));
                    ms.erase(ms.find({a[ir] - a[j], ir}));
                    ms.emplace(a[i] - a[j], i);
                    s.erase(ir);
                }
                s.erase(r);
            }
        }
    }
    tree.build(1, 1, n);
    for (int i : s) if (ty[i] == 1) pre[i] = 1;
    pR[n + 1] = n + 1;
    for (int i = n; i >= 1; i--) pR[i] = (pre[i] ? i : pR[i + 1]);
    FOR (i, 1, n) {
        pL[i] = (pre[i] ? i : pL[i - 1]);
        pre[i] += pre[i - 1];
    }
}

int max_towers(int L, int R, int D) {
    L++, R++;
    if (L == R) return 1;
    if (b == 0) {
        build(D);
        b = 1;
    }
    int ans = pre[R] - pre[L - 1];
    {
        int i = pR[L];
        if (L <= i && i <= R) {
            int j = tree.schr(1, L, i, 1, n, a[i] + D);
            if (L <= j) ans += (tree.que_mn(1, L, j, 1, n) <= a[j] - D);
        }
    }
    {
        int i = pL[R];
        if (L <= i && i <= R) {
            int j = tree.schl(1, i, R, 1, n, a[i] + D);
            if (j <= R) ans += (tree.que_mn(1, j, R, 1, n) <= a[j] - D);
        }
    }
    return ans;
}

/*
in1
7 3
10 20 60 40 50 30 70
1 5 10
2 2 100
0 6 17
out1
3
1
2
*/
# Verdict Execution time Memory Grader output
1 Incorrect 304 ms 4972 KB 1st lines differ - on the 1st token, expected: '1', found: '0'
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4440 KB Output is correct
2 Correct 1 ms 4696 KB Output is correct
3 Correct 1 ms 4660 KB Output is correct
4 Correct 2 ms 4612 KB Output is correct
5 Correct 2 ms 4860 KB Output is correct
6 Correct 1 ms 4696 KB Output is correct
7 Incorrect 2 ms 4696 KB 1st lines differ - on the 1st token, expected: '34', found: '33'
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4440 KB Output is correct
2 Correct 1 ms 4696 KB Output is correct
3 Correct 1 ms 4660 KB Output is correct
4 Correct 2 ms 4612 KB Output is correct
5 Correct 2 ms 4860 KB Output is correct
6 Correct 1 ms 4696 KB Output is correct
7 Incorrect 2 ms 4696 KB 1st lines differ - on the 1st token, expected: '34', found: '33'
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 526 ms 11988 KB 29th lines differ - on the 1st token, expected: '9839', found: '9838'
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 200 ms 6488 KB 2nd lines differ - on the 1st token, expected: '7063', found: '7197'
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4440 KB Output is correct
2 Correct 1 ms 4696 KB Output is correct
3 Correct 1 ms 4660 KB Output is correct
4 Correct 2 ms 4612 KB Output is correct
5 Correct 2 ms 4860 KB Output is correct
6 Correct 1 ms 4696 KB Output is correct
7 Incorrect 2 ms 4696 KB 1st lines differ - on the 1st token, expected: '34', found: '33'
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 304 ms 4972 KB 1st lines differ - on the 1st token, expected: '1', found: '0'
2 Halted 0 ms 0 KB -