Submission #1057708

#TimeUsernameProblemLanguageResultExecution timeMemory
1057708VectorLiToll (APIO13_toll)C++17
0 / 100
1 ms2396 KiB
#include <bits/stdc++.h> #define long long long using namespace std; struct union_find { vector<int> s, p; union_find(int n = 0) : s(n, 1), p(n) { iota(p.begin(), p.end(), 0); } int find(int u) { if (p[u] != u) { p[u] = find(p[u]); } return p[u]; } bool merge(int u, int v) { u = find(u); v = find(v); if (u == v) { return false; } if (s[u] < s[v]) { swap(u, v); } p[v] = u; s[u] = s[u] + s[v]; return true; } bool same(int u, int v) { return find(u) == find(v); } int size(int u) { u = find(u); return s[u]; } }; /* 思维不难,但是一定一定要思路清晰。 1. 看到 k <= 20,想一想 bitmasks,如果想到了,不难想出一种简单的暴力: 我们枚举每一条需要选的边,然后强制把它加到树上(当然,如果出现环直接 pass) 再跑最小生成树,用边去限定我们那些没有确定边权的边(用了一个经典的结论), 时间复杂度为 2^k * mlogn,可以拿到约 56 分。 2. 我们发现,这整个过程中,总有一些边会加入到最小生成树,这也很好理解。 我们一共就 k 条可以选择的边,这些边能连起来的连通块就 k + 1 个,而图 一共有 n 个连通块,很显然一定是会有很多很多边需要连起来的。所以,我们 直接将所有 k 条边加入,然后再跑一边最小生成树,这个时候选择的边是一定 会一直选下去的。 3. 很自然的,我们缩一下点(这个使用并查集可以维护),我们现在就剩下了 k + 1 个点,再把剩余的那些原边跑一边最小生成树,这样子,我们就确保了多余的边只有 k 条,再算上原来的 k 条边,一共是 k * 2 条,瞎搞都可以。 */ const int N = (int) 1E5; const int M = (int) 3E5; const int K = 20; const int A = numeric_limits<int>::max(); int n, m, k; bool t1[M]; array<int, 3> e1[M]; array<int, 2> e2[K]; array<int, 3> e3[K]; vector<int> e4[K + 1]; int a[N]; long e[K + 1]; void Kruskal1() { union_find s(n); for (int i = 0; i < k; i++) { int u = e2[i][0], v = e2[i][1]; s.merge(u, v); } for (int i = 0; i < m; i++) { int u = e1[i][1], v = e1[i][2]; t1[i] = s.merge(u, v); } } void Kruskal2() { union_find s1(n); for (int i = 0; i < m; i++) { int u = e1[i][1], v = e1[i][2]; if (t1[i] == true) { s1.merge(u, v); } } int c = 0; vector<int> p(n); for (int i = 0; i < n; i++) { if (s1.find(i) == i) { p[i] = c; c = c + 1; } } assert(c == k + 1); for (int i = 0; i < k; i++) { int u = e2[i][0], v = e2[i][1]; u = p[s1.find(u)]; v = p[s1.find(v)]; e2[i] = {u, v}; } int t = 0; union_find s2(c); for (int i = 0; i < m; i++) { int u = e1[i][1], v = e1[i][2], w = e1[i][0]; if (t1[i] == false) { int x = p[s1.find(u)]; int y = p[s1.find(v)]; if (s2.merge(x, y)) { e3[t] = {w, x, y}; t = t + 1; } } } assert(t == k); for (int i = 0; i < n; i++) { e[p[s1.find(i)]] = e[p[s1.find(i)]] + a[i]; } } int p[K + 1], d[K + 1]; int g[K + 1]; long t[K + 1]; void DFS(int u) { t[u] = e[u]; for (auto v : e4[u]) { if (v != p[u]) { p[v] = u; d[v] = d[u] + 1; DFS(v); t[u] = t[u] + t[v]; } } } void check(int u, int v, int w) { while (u != v) { if (d[u] > d[v]) { swap(u, v); } g[v] = min(g[v], w); v = p[v]; } } void solve() { cin >> n >> m >> k; for (int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; u = u - 1, v = v - 1; e1[i] = {w, u, v}; } for (int i = 0; i < k; i++) { int u, v; cin >> u >> v; u = u - 1, v = v - 1; e2[i] = {u, v}; } for (int i = 0; i < n; i++) { cin >> a[i]; } sort(e1, e1 + m); Kruskal1(); Kruskal2(); long c = 0; for (int S = 0; S < (1 << k); S++) { union_find s(k + 1); bool f = true; for (int i = 0; i < k; i++) { if (S >> i & 1) { int u = e2[i][0], v = e2[i][1]; if (not s.merge(u, v)) { f = false; break; } } } if (not f) { continue; } vector<bool> t3(k); for (int i = 0; i < k; i++) { int u = e3[i][1], v = e3[i][2]; t3[i] = s.merge(u, v); } for (int i = 0; i < k + 1; i++) { e4[i] = vector<int>(); } for (int i = 0; i < k; i++) { if (S >> i & 1) { int u = e2[i][0], v = e2[i][1]; e4[u].push_back(v); e4[v].push_back(u); } } for (int i = 0; i < k; i++) { if (t3[i] == true) { int u = e3[i][1], v = e3[i][2]; e4[u].push_back(v); e4[v].push_back(u); } } p[0] = -1; d[0] = 0; DFS(0); // g[i] 表示节点 i 到节点 i 的父节点的边权最大是多少,初始的,为 MAX 即可 fill(g + 1, g + k + 1, A); for (int i = 0; i < k; i++) { if (t3[i] == false) { int u = e3[i][1], v = e3[i][2], w = e3[i][0]; check(u, v, w); } } long b = 0; for (int i = 0; i < k; i++) { if (S >> i & 1) { int u = e2[i][0], v = e2[i][1]; int x = d[u] > d[v] ? u : v; assert(g[x] < A); b = b + t[x] * g[x]; } } c = max(c, b); } cout << c << "\n"; } int32_t main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t; t = 1; for (int i = 0; i < t; i++) { solve(); } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...